1) Hermite type elements
Hermite型元
2) Hermite type finite element
Hermite型有限元
1.
In this paper,the anisotropic rectangular Hermite type finite element method for the Second order hyperbolic equations is studied.
研究二阶双曲方程的各向异性矩形Hermite型有限元方法,利用积分恒等式技巧和新的估计方法,在解的光滑性更低且有限元的总体自由度比完全双二次矩形元还少1/4的情况下,得到了完全相同的超收敛性。
3) Hermite-type rectangular element
Hermite型矩形元
4) triangular hermite-type finite element
三角形Hermite型单元
5) vector-type Hermite element
矢量型Hermite元素
补充资料:二元二次型
二元二次型
binary quadratic fonn
二元二次型t肠nary明adratic翻盯11;血.碑姗祖卿哪曰肝幽巾那Ma] 两个变量的二次型,即形如 f=f(x,少)=ax,+bxy+创,(*)的型.如果a,b,c都是整数,则此二元二次型称为整的(in tegral).表达式d二ac一夕/4称为二元二次型的剖别式(由叨亩址旧以)或行列式(击胆川油扭址).有时表达式护一今吸二也称为判别式.二元二次型的算术理论是由P.R肛nat首创的,他证明了二任何形如4k+1的素数均可表为两个整数的平方和.二元二次型的理论是由J‘L肠脚列罗及C.F.Ga让粥完成的.二元二次型理论是n个变量的二次型理论的特殊情形;它的算术理论等价于二次域的理想论,是代数数论的渊源之一(见二次型(quadratic form);二次域(quadratic反】d)). 判别式为d的二元二次型的种数等于25一’,其中s 为d的不同素因子的个数,这要去掉d二1(m叱4)及d二0(m eds)的情形,在这两种情形时s要增加l;如果 一d是平方数,则不同的二元二次型的个数要加倍.数m 在用所有判别式为d的二元二次型组成的一个完全组 表出时,本质上不同的本原表示的个数r(d,m)等于同 余式 x‘三一d(mod用)· 的解数.就一般情形而言,存在一种算法,它把求解给 定的二元二次Dfo如antine方程(特别是方程f(x, y)“m)的间题归结为两个二元二次型的算术等价问 题. a笋0的原型f的所有整自同构可以表成 }}‘一b“/2一cu}1 }}““‘+”“/,}}, 的形状,其中广+d矿之1,而2t与u为整数(见Pcn方 程(PeU equation)).因此,两个型的等价性问题可用 二元二次型的约化理论予以解决.H.M让医。翎ki指 出,二元二次正定型的约化理论是二次正定型约化理论 的特例.整二元二次不定型的约化理论可以归结为二 次无理数的约化理论(见[2] p.叨一103及〔3] p.170 一180). 算术函数h(d)(判别式为d的整二元二次原型的类 数)在数论中起着重要的作用.已知五(d)<十的.由 51卿1宇粤(si嘴1 theorem)可对函数h(d)的增长率 得出某种结果:令d>O,则对于任给的。>0存在常数 ce及c二>0,使得 c;d’/2一子
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条