1) CT-Bezier surface
CT-Bezier曲面
2) CT-Bezier curve
CT-Bezier曲线
3) Bezier surface
Bezier曲面
1.
Drawing Bezier surface with Casteljau algorithm;
应用Casteljau算法绘制Bezier曲面
2.
Through Bezier surface fitting, it represents surface of underwater silt by sampling points .
基于OpenGL技术对湖底清淤过程进行可视化,利用实测的采样点拟和Bezier曲面展现水下淤泥的三维形态,提出根据工程不同进展阶段返回的采样点淤泥厚度,利用最小二乘法建立淤泥厚度h与水泵抽取量Q的关系曲线,并运用了三维模型读取、光照、粒子技术等OpenGL技术。
3.
The paper describes the successful use of characteristics of Bezier surface in three dimensional modeling to solve the continuity problems of complicated surface patches.
为了处理复杂曲面拼接时边界连续性问题,利用Bezier曲面的特性,成功地进行了三维造型,并对一些不规则的曲面给出了处理方法。
4) Bezier surfaces
Bezier曲面
1.
Based on the integration of L-systems and Bezier surfaces,a plant flower image generation algorithm is also given.
在用L-系统描述花朵的拓扑结构的基础上,利用Bezier曲面表现花朵的几何结构,将花朵的拓扑结构和几何结构结合起来,给出了植物花朵的图形生成算法,并生成了苹果花朵具体实例。
6) bezier patch
Bezier曲面片
1.
A Bezier patch passes through its four-corner control points,to embed a watermark,a Bezier patch is divided into two patches.
介绍一种Bezier曲面片嵌入数字水印的新方法。
补充资料:Bezier曲面
Bezier曲面
Bezier surface
条氏zier曲线,即为曲面片的边界曲线。Bz阵中央的四个控制点Pll,P12,处1,P22与边界曲线无关,但也影响曲面的形状。图1双三次Bezier曲面氏2 ier qumianE短zier曲面(E短zier surface)用Be~n多项式及控制点网格定义的曲面。基于E泛zier曲线,可以给出1戈zier曲面的表示式。 设Pij(i=o,1,…,n;z=0,1,…,m)为(n+1)X(m+l)个空间点列,则m xn次1头犯ier曲面定义为:s(。,二)一艺艺刀‘,二(u)Bj,,(w)户。, t二O少=O u,we[0,lj;式中B,,,(u)=几u‘(一u)m一‘, 尽,,(w)=q记(1一w)“一,是E屺nlstein基函 数。 依次用线段连接点列Pij(i=0,1,…,创j二O,1…,m)中相邻两点所形成的空间网格,称之为控制点网格。Bezier曲面的矩阵表示是s(u,w)=仁BO,,(u),Bl.二(u),…,凡,,(u)」刀月州|||.川月两陆卜|!阮P,1 Pom Pl, P,,,(w,m(, J.11n山.1…PP,,(w 0010…湘冲队尸||助 X在实际应用中n,m一般小于4。 (l)双线性Bezier曲面 当m=n=1时,s(二,w)一艺艺 ,=Oj=0B,,1(u)尽,1(w)P。 u,we[0,l]上式定义了一张双线性1戈zier曲面。已知四个角点后,S(u,w)=(1一w)(1一u)p00+(r一u)wPol+u(l一w)Plo+“双夕11。 (2)双二次Bezier曲面 当m=n=2时,:(。,w)=艺艺 f=0少=0B、,2(u)Bj,2(w)P、 u,wC[O,1]由此式定义的曲面,其边界曲线及参数坐标曲线均为抛物线。 (3)双三次Bezler曲面 当m=n=3时,s(。,w)=习艺B、,3(u)Bj,3(二)户。矛=OJ=0 u,w〔[0,1]s(u,w)=[Bo,3(u)BI,3(u)BZ,3(u)B3,3(u)〕门l|||!!lee|eeJ切切叨侧阳月陌|旧!陌﹁叫川|圳l刊P P PP 02 12 2232P P PPP P PP 00 1020叨陆11P|lP|净 X其矩阵表示为s(u,、)二“村之B二M万wT式中v=【u3 uZ ul], W=[w3 wZ wl],3一3引”}0J飞︶00︸︸O八JO一一一 一一 风双三次BeZier曲面如图1所示,B:是曲面特征网格16个控制顶点的位置矩阵,其中Poo、P01、P10、Pll是曲面片的角点。B二阵四周的12个控制点定义了四
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条