1) quasi-nearly cone-subconvexlikeness
拟近似锥-次类凸
1.
Under the condition of quasi-nearly cone-subconvexlikeness, we study the scalarization, Lagrange function and unconstrained optimization, the condition of saddle point and the properties of duality of the primal programming.
对于集值映射多目标半定规划问题,我们首先建立了序拓扑线性空间的研究平台,在拟近似锥-次类凸的框架下,研究了问题的标量化,Lagrange函数与无约束化,鞍点条件和对偶性。
2) Nearly cone-subconvexlike
近似锥-次类凸
1.
Moreover,under the assumption of nearly cone-subconvexlikeness,the necessary and su?cient conditions for a strictly efficient solution being a generalized saddle point in set-valued optimization problems with maps are obtained.
利用广义鞍点的性质和凸集分离定理,得到了广义鞍点的一个集分离性质,并且在近似锥-次类凸假设下建立了集值优化问题严有效解为广义鞍点的充分条件和必要条件。
2.
Results The property of generalized saddle point with cone separation was prved and the conditions of super efficient solutions being the generalized saddle point in the nearly cone-subconvexlike vector optim.
结果得到广义鞍点的一个锥分离性质,并且建立了近似锥-次类凸集值向量优化问题超有效解为广义鞍点的条件。
3) nearly cone-subconvexlikeness
近似锥-次类凸
1.
Under the assump- tion of nearly cone-subconvexlikeness,by applying alternative theorem,a Kuhn-Tucker optimality necessary condition for(VP)is derived,by using scalarization theorem,a suf- ficient condition is also obtained.
在近似锥-次类凸假设下,利用择一性定理得到了Kuhn-Tucker型最优性必要条件,利用标量化定理得到了Kuhn-Tucker型最优性充分条件。
2.
By applying separation theorem for convex sets,the Kuhm-Tucker necessary condition is derived for (VP) to attain its strongly efficient solution,under the assumption of nearly cone-subconvexlikeness,the sufficient condition is also presented.
在近似锥-次类凸假设下,得到了(VP)取得强有效解的充分条件。
4) nearly cone-subconvexlikeness
近似锥-次类凸性
1.
The nearly cone-subconvexlikeness of set-value maps is a very important generalized convexity in optimization theory,this note obtained th.
近似锥-次类凸性是比凸性更弱的一类重要的广义凸性,在集值映射的近似锥-次类凸性条件下,利用凸集分离定理得到了严有效性和强有效性等价这一结论,从而推广了严有效点集和强有效点集对凸集而言相等的结果,所得结果丰富了优化理论的内容。
5) nearly cone-subconvexlike function
近似-锥次类凸函数
6) near-subconvexlikeness
近似次类凸
补充资料:凸锥
凸锥
convex cone
凸锥【阴vex仪扣e;阳叮‘l成.陇叮cl 从一点(凸锥的顶点)出发的射线构成的凸体(con-vex body)V.这个定义把V等同于全空间的情况排除在外.凸锥的概念包括二面角和半空间等概念作为其特殊情况.凸锥有时指的是这个锥体的表面.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条