1) Dirichlet boundary
Dirichlet边界
1.
consider the exact controllability of wave equation with Dirichlet boundarywhere Ω is the region with bound in R~n.
讨论一类Dirichlet边界波动方程 (?)的精确能控性,这里Ω是R~n中的有界区域。
2) Dirichlet boundary condition
Dirichlet边界条件
1.
Multiplicity of solution for quasilinear elliptic systems with Dirichlet boundary condition;
Dirichlet边界条件下一类拟线性椭圆方程组的多解性
2.
Under the Dirichlet boundary condition, the eigenvalue problem of elliptic operators (-1) p∑|α|=|β|=p α(A αβ β) with order 2p(p≥1) is discussed.
设Ω是 Rm( m≥ 2 )中的一个有界区域 ,其边界足够光滑 ,考察 2 p( p≥ 1 )阶椭圆算子 ( - 1 ) p ∑|α|=|β|=p α( Aαβ β)在 Dirichlet边界条件下的本征值问题 ,给出了其本征值的一个下界 ,该下界除与维数 m有关外仅依赖于区域Ω的体积 。
3.
The reconstruction of the scattering domain with a corner of acoustic waves is presented in this paper, it is assumed that the total field satisfied homogenous Dirichlet boundary condition ;in direct problem by Nystrm ,due to the singularity of the solution at the corner ,a quadrature method based on an equidistant grid only very poor convergence.
对带尖角的障碍声波散射区域进行了反演,其前提条件是整体场满足奇次Dirichlet边界条件。
3) mixed Dirichlet-Neumann boundary
混合Dirichlet-Neumann边界
1.
Existence of infinitely many solutions is studied for a class of semilinear elliptic equations with mixed Dirichlet-Neumann boundary conditions involving Hardy terms and Hardy-Sobolev critical exponents by the variational method and some analytical techniques.
通过变分方法和一些分析技巧,得到了具有混合Dirichlet-Neumann边界条件, Hardy项和Hardy-Sobolev临界指数的半线性椭圆方程无穷多解的存在性结果。
5) Dirichlet boundary value problem
Dirichlet边值问题
1.
The Dirichlet boundary value problem for harmonic function;
调和函数的Dirichlet边值问题
2.
In this paper we study the nonsingular discrete Dirichlet boundary value problem for the second-order differential systems one-dimension P-Laplacian,we prove the existence of solutions for these BVPs by using the Leray-Schauder nonlinear alternative theorem and Schauder cone fixed-point theorem.
本文主要研究二阶微分系统一维p-Laplacian非奇异离散Dirichlet边值问题,利用Leray-Schauder非线性抉择定理和Schauder不动点定理证明了此问题的解的存在性定理,推广并改进了已有结果。
3.
In this paper the Dirichlet boundary value problem and the T-periodic boundary value problem of the p-Laplacian ordinary differential equation,(ψp(u′))′=f(t,u) are discussed.
讨论p-Laplace方程(pψ(u'))'=f(t,u)的Dirichlet边值问题和T-周期边值问题,在一定条件下证明了解的存在性。
6) Dirichlet boundary problem
Dirichlet边值问题
1.
To begin with, we make use of the theory of fixed-point to discuss second order differential equations with Dirichlet boundary problems.
首先利用不动点定理讨论了二阶微分方程Dirichlet边值问题,得到了存在两个正解的充分条件,并通过例子说明了条件的可行性。
补充资料:Dirichlet分布
Dirichlet分布
DiricWet distribution
上的概率分布,火二2,3,…,其概率密度为 k 低口斌一‘.当(x.,…,凡)。凡时; P林、,“’,xk)=凡 〔o,当(x。,…,气)砖凡时.此处v;>0,…,帐>0,且 Q一r(v,+…+v%26)六共二, 一:二、.,“·牛tr(叱)’而r(·)是7函数,B分布(忱协distribut沁n)是D功ch-let分布在k=2时的特殊情况.Dirichlet分布在顺序统计量理论中起重要作用.例如,若X,…,X是独立随机变量,都遵从在区间[0,11上的均匀分布,X(l)簇…毛X回是相应的顺序统计,(o司er statistle),则k个差 x(用,),丫用’)一丫爪‘),…,X(峡一,)一x(用‘一,),l一x(阴‘)(假定l(从1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条