说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> F|(~)_g-稳定子代数
1)  F|(~)_g-stable subalgebra
F|(~)_g-稳定子代数
2)  algebraic stability
代数稳定
1.
According to algebraic stability and (k,p,q)-algebraic stability of general linear methods, the algebraic conditions of mumerical stability of θ-one-leg methods are obtained,i.
利用一般线性方法的代数稳定性和(k,p,q)-代数稳定性的概念,得到了θ-单支方法数值稳定的代数条件,即当θ≥12时,θ-单支方法是代数稳定和对角稳定的,任给的ε≥0,则θ-单支方法是(1,0,2θ-1-ε)-代数稳定的。
3)  Stable parameter (△f)
稳定度(△f)
4)  algebraic stability
代数稳定性
1.
This paper presents the algebraic stability concept for one-stage one-step multiderivative methods, according to the weak algebraic stability concept on multiderivative methods in the paper[1].
本文从文献中有关多值多导数方法的弱代数稳定性概念引伸出单级单步多导数方法的代数稳定性概念,并建立了若干单级单步多导数方法为代数稳定的充分条件与充要条件。
2.
And then the algebraic stability of One-Leg-Methods is studied,according to various conditions,we gained some conclusions for the algebraic stability of these problems,these conclusions are the essential improvement of those in document\.
然后研究了单支θ-方法的代数稳定性,针对各种不同的情形,得到了该问题代数稳定性的一些结论,这些结论是文献[5]中相应结论的本质改进。
3.
Discusses the algebraic stability of two step linear and one leg methods under different choices of inner vectors.
讨论了在内向量不同选取下的线性多步法和单支法的代数稳定性。
5)  f-algebra
f-代数
1.
In this paper,the order structure properties of multiplicative spaces about the order continuous hidual and the order dual in lattice ordered algebras(f-algebra,almost f-algebra and d-algebra),equipped with Arens multiplication,are mainly studied.
主要讨论了格序代数(f-代数,殆f-代数,d-代数)的二次序连续共轭与一次共轭在Arens乘积下的乘积空间的序结构问题。
6)  almost f-algebra
殆f-代数
1.
In this paper,the order structure properties of multiplicative spaces about the order continuous hidual and the order dual in lattice ordered algebras(f-algebra,almost f-algebra and d-algebra),equipped with Arens multiplication,are mainly studied.
主要讨论了格序代数(f-代数,殆f-代数,d-代数)的二次序连续共轭与一次共轭在Arens乘积下的乘积空间的序结构问题。
补充资料:Cartan子代数


Cartan子代数
Cartan subalgebra

  Cal出口子代数{C田七口叨b目geb.;Kalyr她叫八翻n石碑l,域k上有限维Lie代数g的 g的一个等于它在g内的正规化子的幂零子代数.例如,若g是某一固定阶的全体复方阵所构成的Lie代数,则一切对角方阵所构成的子代数就是g的一个Cartan子代数.Cartan子代数也可以定义为g内一个幂零子代数t,它等于它的Fitting零分支(Fittingnull一compenent)(见Lie代数表示的权(weight ofarePresentation of a Lie al罗bra)) 助={X。。:vH:t〕nx.,。z((adH)月‘H(幻=0)},这里ad代表g的伴随表示(见lie代数(Lieal罗-bra)). 进一步假设k的特征是零.这时,对于任意正则元x钊,g中一切被adX的幂所零化的元素的集合n(X,g)是g的一个Cartan子代数,并且g的每个Cartan子代数都具有tt(X,g)的形状,X是某一个适当的正则元.每个正则元属于且只属于一个Cartan子代数.。的所有Cartan子代数的维数相同,等于g的誉(rank).Cartan子代数在Lie代数的满同态之下的象仍是Cartan子代数.如果k是代数闭的,则g的一切Cartan子代数都是共扼的;更确切地说,它们可以被g的自同构代数群D中的算子将一个变到另一个,这里D的Lie代数是adg的换位子代数.如果q是可解的,那么不假设k是代数闭的,上述断言仍然成立. 设G或是特征为零的代数闭域k上的一个连通线性代数群,或是一个连通Lie群,而g是它的Lie代数.那么g的一个子代数t是一个Cartan子代数,当且仅当它是G的一个ca比坦子群(CartaJ飞subgrouP)的Lie代数 令g是k土1个有限维向量空间V的全体自同态所构成的Lie代数叭伊)的一个子代数,J是叮印)中包含g的最小的代数的Ue代数(Lie al罗bra,al罗braie).如果下是可的一个Cartan子代数,则下门@是g的一个Cartan子代数,井且如果t是g的一个Cartan子代数汀是91(V)中包含t的最小的代数子代数,则下是可的一个Cartan子代数且t二『自务. 令人CK是一个域扩张g的一个子代数t是Cartan子代数,当且仅当t⑧*K是g⑧*K的Cartan子代数 当q是一个半单Lie代数(这是E.Cartan所使用的名称)时,Cartan子代数起着非常重要的作用.在这种情形下,g的每个Cartan子代数t都是交换的并且由半单元素组成(见J.闭aII分解(Jordande~户万1-tion)),且价Inog型(萄lling form、在t上的限制是非奇异的‘【补注】g的一个兀素h叫做正则的(re酗盯),如果g的自同态adh的Fitting零分支的维数最小.在以元素是正则的条件定义一个Zarlski开子集的意义下,g中儿乎所有的”元素是正则的.对于正则元h来说,adh的P’i往Ing零分支是Cartan子代数这一结果对于任意无限域上的有限维Lle代数都成立({A4],p.59).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条