说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 离散Lax对
1)  discrete Lax-pair
离散Lax对
2)  Lax-Wendroff time discretization
Lax-Wendroff型时间离散
3)  Lax pair
Lax对
1.
By using the bilinear operator identities,this paper constructs the bilinear Bcklund transformation for the KP equation with self-consistent sources,obtains the Lax pair for the KP equation with self-consistent sources from the bilinear Bcklund transformation,and testifies the lax pair by the compatibility condition.
利用一些双线性算子恒等式构造出带源的KP方程的双线性Backlund变换,然后从双线性Backlund变换得到带源的KP方程的Lax对,由此证明了带源的KP方程的Lax可积性。
2.
Later, in order to further analyze 2D QG equation, a Lax pair representation (L,A) of the equation is discussed.
最后给出了一个2D QG方程的Lax对表示。
3.
[1],an isospectral Lax pair is established whose compatibility condition gives rise to a soliton family with an arbitrary parameter,which is Lax integrable.
利用文献[1]中的一个6维Lie代数及其loop代数,构造了一个等谱Lax对,由其相容性条件导出了含任意参数的Lax可积意义下的孤子方程族,其约化情形即为广义的耦合KdV方程族。
4)  Lax pairs
Lax对
5)  transformation of Lax pair
Lax对变换
1.
A suitable transformation of Lax pair is made so as to make Lax pair before and after the transformation keep solution equations invariant.
首先做一个恰当的 Lax对变换 ,使变换前后的 Lax对保持孤子方程族不变 。
6)  adjoint Lax pair
伴随的Lax对
补充资料:离散时间周期序列的离散傅里叶级数表示
       (1)
  式中χ((n))N为一离散时间周期序列,其周期为N点,即
  式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
  
  从式(1)可导出已知X((k))N求χ((n))N的关系
   (2)
  式(1)和式(2)称为离散傅里叶级数对。
  
  当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条