说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Pompeiu算子T
1)  Pompeiu operator T
Pompeiu算子T
1.
This paper mainly studies two classes of boundary valueproblems in Clifford analysis and the Ho|¨lder continuity of Pompeiu operator Tin quaternionic analysis by using complex analysis method.
本文用复方法研究Clifford分析中两类边值问题和四元数空间中Pompeiu算子T的性质。
2)  Pompeiu operator
Pompeiu算子
3)  T* opera tor
T~*算子
4)  two-tuple linguistic weighting arithmetic average(T-WAA) operator
T-WAA算子
5)  T-OWA operator
T-OWA算子
1.
Properties of T-OWA operator and T-OWG operator are also analyzed.
首先描述了二元语义信息集结的有序加权平均(T-OWA)算子,并提出一种有序加权几何(T-OWG)算子;然后分析了T-OWA算子和T-OWG算子所具有的性质。
6)  T-OWG operator
T-OWG算子
1.
Properties of T-OWA operator and T-OWG operator are also analyzed.
首先描述了二元语义信息集结的有序加权平均(T-OWA)算子,并提出一种有序加权几何(T-OWG)算子;然后分析了T-OWA算子和T-OWG算子所具有的性质。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条