说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Laplace积分变换
1)  Laplace integral transform
Laplace积分变换
2)  Laplace transform and Hankel transform
Laplace和Hankel积分变换
3)  convolutions/Laplace transform
卷积/Laplace变换
4)  Laplace transformation
Laplace变换
1.
Laplace transformation and simulation for Stirling cryocooler s vibration maths model;
斯特林制冷机振动数学模型的Laplace变换及仿真
2.
Solving the vibration problem of elastic rod with concentrated mass on one end by Laplace transformation;
再论用Laplace变换法求解端点系有集中质量的弹性杆的振动问题
3.
Solving the vibration problem of an elastic rod with concentrated mass on one end by Laplace transformation;
用Laplace变换法求解端点系有集中质量的弹性杆的振动问题
5)  Laplace transform
Laplace变换
1.
Solution of one type of infinite integral by Laplace transform;
用Laplace变换求一类无穷限积分
2.
Solution of one-dimensional consolidation for double-layered ground by Laplace transform;
Laplace变换解双层地基固结问题
3.
Dynamic response of structures calculated by combining finite element with Laplace transform;
Laplace变换—有限元法计算结构动响应
6)  Laplace inverse transformation
Laplace逆变换
1.
Solution of detention-including Laplace inverse transformation;
含有延迟的Laplace逆变换的求解
2.
By using Laplace inverse transformation method, a two-dimensional time-dependent partial differ-ential equation for crystal growth is analyzed and the solution is obtained.
对定常速度下二维非稳态晶体生长的数学模型进行了分析,证明了解的唯一性,并运用Laplace逆变换法对该定解问题进行求解,最后给出了一个具体的例子。
3.
Based on the generation theorem in terms of the Laplace transformation and the properties of exponentially bounded integrated C-semigroups,the Laplace inverse transformation for exponentially bounded integrated C-semigroups is deduced.
以积分C半群生成定理的Laplace刻划为基础,利用积分半群的性质,推导出指数有界积分半群的一种表达形式——Laplace逆变换形式。
补充资料:Laplace积分


Laplace积分
Laplace integral

u咖理积分〔u咖沈加魄.1;皿auoaca娜erpa月} 1)如下形式的积分: 丁,(:)。一己:二r(,), 0它定义了实变量t(0<:<的)的函数f(t)的积分h内沈变换(l刁PlaCe饥l斑form),给出了一个复变量p的函数F(川.P.Lap】a优在18世纪末和19世纪初考虑了这个积分;L .E山er在1737年曾应用过. 2)依赖于参数:,吞>O的两个特殊的定积分: r 00SRX,兀_,。 .一aX=—e J戊一十X一乙以 0 r xsinRx,兀 I一-二一一‘一护叮X二,二,已 J仪一十X一乙 廿.n,b班T玲从KOB三哭
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条