说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 特征值指标
1)  index of eigenvalue
特征值指标
2)  Characteristic Value Index System
特征值指标体系
3)  characteristic index
特征指标
1.
Discern the false oil from the genuine by characteristic index of fatty acid;
应用脂肪酸特征指标鉴别掺伪鱼油
2.
Upper garment of lady′s suit: structure characteristic indexes and their mathematic models;
女套装上衣结构特征指标及其数学模型
3.
The characteristic indexes of Daqu aroma-producing capability include ammoniacal nitrogen and the specific consumption of amylum.
氨态氮和淀粉消耗率为大曲生香力的特征指标。
4)  characteristic indexes
特征指标
1.
Research on the characteristic indexes of young ladies' breasts based on bra made-to-measure manufacturing;
基于文胸量身定制的人体特征指标的研究
2.
Research on the characteristic indexes of male students′ lower body in the west China;
西部地区男大学生下体特征指标研究
3.
The main characteristic indexes will provide a theory basis for the design and manufacturing of collar with perfect fitness.
对200名年龄在19~26岁之间男大学生随机取样,进行三维测量;对影响人体颈部结构造型的10个相关部位尺寸数据进行频数分布、聚类和相关分析;得出决定并区分男性颈部的特征指标,为提高服装领部的合体性提供了依据。
5)  index property
指标特征
1.
Collection of female body characters and extraction of the index property;
女性形体特征的选择及指标特征提取
6)  signature of an eigenvalue
特征值的符号指标
1.
Using Prfer transform,we give a description of the signature of an eigenvalue,and give the relation between the signature of an eigenvalue and the signs of the corresponding leading coefficients of Weyl function and the pru¨fer angle at this eigenvalue.
利用Prfer变换,给出了上述Sturm-Liouville算子特征值的符号指标的具体形式;得到了特征值的符号指标与Weyl函数以及Prfer角在该特征值处的罗朗展式(泰勒展式)的首项系数的符号之间的关系;最后,在上述两个结果的基础上给出了上述Sturm-Liouville算子的第n个正特征值所对应的特征函数在[0,l]内的零点个数的计算公式。
2.
Using Prufer transform, we give a description of the signature of an eigenvalue, and give the relation between the signature of an eigenvalue and the signs of the corresponding leading coefficients of Weyl function and the Priifer angle at this eigenvalue.
利用Prufer变换,给出了上述Sturm-Liouville算子特征值的符号指标的具体形式;得到了特征值的符号指标与Weyl函数以及Prufer角在该特征值处的罗朗展式(泰勒展式)的首项系数的符号之间的关系;这两个结果在形式上比P。
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条