1) intrinsically knotted graphs
内在纽结图
1.
Intrinsically linked and intrinsically knotted graphs are very important graphs in spatial graphs.
内在链图和内在纽结图是空间图中的两类重要的图。
2.
In recent years, intrinsically linked and intrinsically knotted graphs, as very important graphs in spatial graphs, are becoming targets of some relatively new research areas.
内在链图和内在纽结图是近年来比较新的一个研究领域,也是空间图中的两类重要的图。
3.
On the basis of giving the intrinsically knotted graphs H0,the paper describes the construction of one of the edge-disjoint linked graphs with knotted components H(43) by using the method of the graphs K7 formed by the graphs H0 and edges.
在给出内在纽结图H0的基础上,利用其与边组成的图形成完全图K7,并采用该方法构造出一类带有纽结分支的边—不交链图H(43)。
2) intrinsically knotted and 3-linked graphs
内在纽结与3-链图
1.
Intrinsically linked graphs with knotted components and intrinsically knotted and 3-linked graphs;
带有纽结分支的内在链图和内在纽结与3-链图
3) intrinsically linked graphs with knotted components
带纽结分支的内在链图
4) knotted component
带有纽结分支的内在链图
1.
Using the Petersen graph P9 formed by the two Petersen graphs K3,3,1 and edges,this paper is devoted to constructing the intrinsically linked graphs with knotted components.
针对于Petersen图P9进行研究,利用两个Petersen图K3,3,1与中间边组成的图的方法来形成petersen图中的P9,本文得到了一种带有纽结分支的内在链图H(93),并证明了该定理。
5) projective diagram of knot
纽结投影图
6) intrinsic scheme
内在图式
补充资料:图的减缩图(或称图子式)
图的减缩图(或称图子式)
minor of a graph
图的减缩图(或称图子式)【.皿以ofa脚户;MHHoPrpa中a」【补注】设G是一个图(graph)(可以有环及多重边).G的一个减缩图(nullor)是从G中接连进行下述运算而得的任何一个图: i)删去一条边; 五)收缩一条边; 说)去掉一个孤立顶点. NRobe由on与P.D.Se脚aour的图减缩定理(脚Ph nl的。r theon习11)如下所述:已知有限图的无穷序列G,,GZ,…,则存在指标i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条