说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 线段上连续自映射
1)  Continuous self-Maps on Interval
线段上连续自映射
2)  m-piece monotone continuous self-map
m段单调连续自映射
1.
In this paper it was obtained a necessary and sufficient condition for m-piece monotone continuous self-map F of the iterval I=[0,1]with N(F)=N(F2) to have the n-fold iterative solutions.
本文得到了区间I=[0,1]上满足N(F)=N(F2)的m段单调连续自映射F具有n阶连续迭代根的一个充要条件。
3)  k-piece monotone continuous self mapping
k段单调连续自映射
4)  cocontinuous mapping
上连续映射
5)  continuous map
连续自映射
1.
Specification is an important dynamical property, and it is equivalent to topological mixing for continuous mapping on the interval and the tree,and for the continuous map of compact metric space,POTP and topological mixing imply weak specification.
文章对紧致度量空间上连续自映射,研究了弱specification性质与各种混沌之间的关系,证明了具有弱specification性质的系统是Li-Yorke意义下混沌的,是Ruelle-Takens意义下混沌的,是处处混沌的,并且具有性质P。
2.
Then we prove that the system with weak specification must have a continuous map f:X→X with an invariant probability measure m ,such that Suppm=X and M(f)=X.
对紧致度量空间上连续自映射,研究了弱Specification性质与不变概率测度之间的关系,证明了具有弱Specification性质的系统一定存在f:X→X的不变概率测度m,使得Suppm=X,并且f:X→X有满测度中心,即M(f)=X。
3.
In this paper, we study the invariant measures of a continuous map and a continuous semi-flow on a compact metric space.
本文研究了紧致度量空间上连续自映射及连续半流的不变测度。
6)  continuous self-mapping
连续自映射
1.
Non-wandering set of continuous self-mapping defined on topological space
拓扑空间上连续自映射的非游荡点
2.
In this paper,the unstable manifold of a continuous self-mapping/on a completely densely ordered linear ordered topological space is discussed.
文章研究完备稠序的线性序拓扑空间上连续自映射f的不稳定流形。
3.
In this paper,the structures of the unstable manifold of a continuous self-mapping on a completely densely ordered linear ordered topological space is discussed.
研究完备稠序线性序拓扑空间上连续自映射的不稳定流形的结构。
补充资料:半连续映射


半连续映射
semi-continuous mapping

半连续映射【胭抽.以扣伪.曰旧叮口n那堪;nO月yUe即ePu一。oe oo6p‘eH“e],粤(下)(uP衅(fo‘))半浮等映射’‘拓扑空间(top01o卿sPace)x到偏序集尸的映射f,使得 U川戈.=x蕴含 而了(x。)簇f(x)〔垫f(x,)》f(、)],这里,而(迹)表示上(下)极限. M.H.B浦1翼xoBc‘成撰【补注】在偏序集尸上,由P和所有集合U二二{y已尸:y
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条