1) covering system
同余覆盖系
1.
The principal way is both covering system which is defined by P.
我们用两种不同的方法证明了我们的结果,但最基本的方法都是运用同余覆盖系和中国剩余定理。
2) (Weakly) covering congruence
(弱)覆盖同余
3) two elements covered principal congruence relations
二元覆盖主同余关系
1.
Firstly, in this paper according to the characterization of two elements covered principal congruence relations of a maximal chain and the distributivity of congruence lattices we proved that the congruence lattice of a chain with finite element is a Boole lattice, and we further proved that the congruence lattice of a chain with countable element is a Boole lattice.
本文首先利用极大链中的二元覆盖主同余关系以及根据同余关系的分配性,证明了任意有限链的同余关系格是布尔格,进而又证明了具有可数个元的链的同余关系格是布尔格。
4) infinite incongruent exact covers
不同余精确覆盖
5) covering congruence group
覆盖同余式组
1.
In this paper a kind of covering congruence group is constructed and with a method of classification for nonnegative integern.
建立了一类覆盖同余式组并通过对非负整数n进行分类等方法,给出使k·2n-1对每一非负整n均为合数的K值的计算。
6) distinct covering systems
不同模覆盖系
1.
One fascinating problem on distinct covering systems (DCS) is if a DCS exist with all modulus odd In this paper we shall prove a necessary condition for A to be DCS consisting of odd square-free moduli.
设A={as(ms):s=1, ,k}为无平方因子奇数不同模覆盖系,设模的最小公倍数N=[m1,m2, ,mk]=p1p2 pn,其中p1
补充资料:鲍防员外见寻因书情呈赠(曾与系同举场)
【诗文】:
少小为儒不自强,如今懒复见侯王。览镜已知身渐老,
买山将作计偏长。荒凉鸟兽同三径,撩乱琴书共一床。
犹有郎官来问疾,时人莫道我佯狂。
【注释】:
【出处】:
全唐诗:卷260_16
少小为儒不自强,如今懒复见侯王。览镜已知身渐老,
买山将作计偏长。荒凉鸟兽同三径,撩乱琴书共一床。
犹有郎官来问疾,时人莫道我佯狂。
【注释】:
【出处】:
全唐诗:卷260_16
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条