说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非合作椭圆方程组
1)  non-cooperative elliptic systems
非合作椭圆方程组
1.
The author deals with two non-cooperative elliptic systems involving p(x)-Laplacian in a smooth bounded domainΩand in R~N respectively.
我们分别在有界光滑区域Ω和全空间R~N上考虑了包含p(x)-Laplacian算子的两类非合作椭圆方程组(椭圆系统)。
2)  Parabolic-elliptic
非线性抛物-椭圆耦合方程组
3)  elliptic system
椭圆方程组
1.
Infinitely multiple solutions of a perturbed symmetric semilinear elliptic system;
一类摄动对称半线性椭圆方程组的多重解
4)  elliptic equation systems
椭圆方程组
1.
However, there are only a few results about regularity for weak solutions of nonlinear elliptic equation systems.
 二次增长的非线性椭圆方程弱解的正则性研究已经取得了比较完备的结果,但对于方程组弱解的正则性研究取得的成果还不多,有关文献证明了对角型椭圆方程组弱解在一定条件下是Holder连续的。
5)  elliptic systems
椭圆方程组
1.
A note on the regularity for theelliptic systems;
关于椭圆方程组正则性的一个注记
2.
In this paper, we consider a general eigenvalue problem for quasilinear elliptic systems: First, we get the bound of minimizing solutions for systems.
本文对拟线性椭圆方程组的一般特征问题得到极小解在L∞中的界,并利用变分方法证明了它的极小解的存在性。
6)  nonlinear elliptic system
非线性椭圆方程组
1.
Under various conditions, the existence of critical points and nontrivial critical points is proved by using variational methods, the extreme theory and the Mountain Pass lemma, so that the solution and nontrivial solution of the nonlinear elliptic system is obtained.
将一类非线性椭圆方程组的求解问题化归为一给定泛函的临界点问题。
2.
Using the morse eritical groups, the nonlinear elliptic system is discussed.
应用Morse临界群讨论了如下的变分型的非线性椭圆方程组的非平凡解的存在性:(P)-Δu=λ(m11(x)u+m12(x)ν)+n1(x)|u|q-2u+Fu(x,u,ν) x∈Ω-Δν=λ(m21(x)u+m22(x)ν)+n2(x)|ν|q-2ν+Fv(x,u,ν) x∈Ωu| Ω=ν| Ω=0这儿,q∈(1,2),ni(x)可允许变号,这使得本文的结果是新的。
补充资料:线性椭圆型偏微分方程和方程组


线性椭圆型偏微分方程和方程组
inear elliptic partial differential equation and system

算子(1)的阶数是偶的,且对任意一对线性无关向量七和七’,多项式(关于T) 艺a。(x)(古+:心‘)“ !区卜m恰有m’=m厂2个带负虚部的根及带有同样数目的正虚部的根,则称算子(l)是真椭圆型的(properlyel-如出).当n)3时,任一椭圆型算子均是真椭圆型的,因此这个定义本质上仅对n=2时提出的. 在线性椭圆型偏微分方程理论中,利用方程右端项及边界条件的范数得到解的范数的先验估计方法起着重要的作用.C.H.EepHunre俪(见f6])开始系统地使用这些估计,较近的发展要归之于J.Schauder(见【7」).schauder估计关注于区域D内具有H61der连续系数的二阶线性椭圆型偏微分方程的解,且有两种形式.第一形式的估计(“内”估计)是在任何紧集KCD上利用suP}川及方程右端项的HOlder常数和模得到所含的直到二阶的导数和它们的H6】der常数的估计.而第二形式的估计(“直到边界”的估计)关注于边值问题.在此,同样一些量被估计了,但是在问题中的区域的闭包内进行,并且在估计中出现边界条件右端项的范数. Scha比ler估计已进一步推广到一般线性椭圆型偏微分方程和边值问题(见【71).这些估计的导出是基于位势理论.借助于单位分解,对它们可给出其局部特性,并且事情就化为这样一些奇异积分算子范数的估计,在内估计中此奇异积分算子表示为和基本解相联系的函数的一个卷积,而在直到边界的估计中则是与在某标准区域内相应边值问题的G代犯n函数相联系的函数的卷积.这些估计最早是在HOlder空间C“的度量下得到的,它们已推广到C仗汕leB空间评;(L,估计),并且是对广义解. 对于强椭圆型算子存在称为G脚婉不等式(G遏r-由瑶袖闪回lty)的先验估计,这个不等式是用另外方法得到的.它处于对研究边值间题的一个基本处理方法的中心(Hjlberl空间方法), 在线性椭圆型偏微分方程理论中,基本解处于一个重要的地位.对具充分光滑系数的算子(1),其基本解(仙幻田1℃nial solution)定义为满足条件 了“‘,(、)‘(;,,)‘;一,(,),对所有,‘C:的函数J(、,y)二J,(*).从广义函数理论的观点来讲,这意味着 Jy“占y,其中右端是Din‘的占函数. 线性椭圆型偏微分方程的基本解对这样一些方程是存在的二带有解析系数的方程(于是它们本身是解析的),具无穷次可微的系数的方程(于是它们属于C。类的)以及许多另外一些方程,这些方程的系数具有较弱的限制.对于由最高阶爪=Zm’项组成的常系数椭圆型算子L。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条