1) implicit resolvent equations
隐预解算子方程技巧
2) resolvent operator technique
预解式算子技巧
1.
By using the resolvent operator technique,a new algorithm for approximating the solution of this class of variational inclusions was given,the convergence of the sequence of iterates generated by the algorithm was also discussed.
利用预解式算子技巧构造了一类求变分包含逼近解的迭代算法,并讨论了由此算法产生的迭代序列的收敛性。
2.
Using the resolvent operator technique,we obtain the approximate solution to a system of set-valued quasi-variational inclusions.
在Banach空间中引进一类H-增生算子,并给出了一类新的(H-η)-增生算子的概念,及相关的预解式算子RH,ηM,λ,利用新的预解式算子技巧得出一系列广义集值拟变分包含问题的逼近解。
3) Resolvent operator technique
预解算子技巧
1.
By using the resolvent operator technique for generalized m -accretive mapping due to Huang and Fang, we prove the existence theorem of the solution for this system of operator equations in Banach spaces.
利用Huang和Fang提出的广义m-增生映象的预解算子技巧,我们证明了Banach空间中此算子方程组的解的存在定理。
2.
Using resolvent operator technique associated with an (H, η)-monotone operator, the authors suggest a new iterative algorithm for approximating a solution to (NSVOI) and also discuss the convergence criteria of iterative sequences generated by the algorithm.
应用与( H,η)单调算子相关的预解算子技巧提出了一个迭代算法逼近其解,并且讨论了由此算法产生的迭代序列的收敛特征。
3.
A new class of nonlinear set-valued implicit variational-like inclusions involving(A,η)-monotone mappings in the framework of Hilbert spaces is introduced and then based on the generalized resolvent operator technique associated with(A,η)-monotonicity,the approximation solvability of solutions using an iterative algorithm is investigated.
文章在Hilbert空间中引入了一类新的涉及(A,η)单调映射的非线性集值隐似变分包含问题,基于与(A,η)单调性相关的广义预解算子技巧,用一种迭代算法研究了解的近似可解性,所得结果改进了许多近期结果。
4) Generalized resolvent operator technique
广义预解算子技巧
5) implicit resolvent operator
隐预解算子
1.
In this paper, the authors study the existence of solution for a system of generalized nonlinear variational inequalities with implicit resolvent operator technique.
运用隐预解算子技巧研究了一类含参广义非线性变分不等式组解的存在性,在一定条件下,得到了这类含参广义非线性变分不等式组解连续与参数的关系。
2.
A new class of completely generalized mixed strongly nonlinear variational inclusions are introduced and studied in Hilbert space, implicit resolvent operator technique is used to study solution analysis of these variational inclusions.
引入并研究了Hilbert空间中一类新的完全广义混合强非线性变分包含,利用改进的隐预解算子技巧分析了此变分包含的解的灵敏性,所得结果改进并推广了以往相应结果。
3.
In this paper,the authors introduce and study a class of new generalized nonlinear implicit quasivariational inclusions in Hilbert spaces,and use the implicit resolvent operator technique to study the sensitivity analysis for them.
引入和研究Hilbert空间中一类新的广义非线性隐拟变分包含,并用隐预解算子技巧分析了其解的灵敏性。
6) generalized resolvent operator equation system
广义预解算子方程组
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条