1) Oscillatory Integral Operator
振荡积分算子
1.
Some Problems on Commutators Generated by Singular Integral Operators and Oscillatory Integral Operators;
粗糙核奇异积分算子及振荡积分算子的交换子的有界性问题
2) oscillatory singular integral operator
振荡奇异积分算子
1.
In this paper we prove the H α,p q (ω 1,ω 2) and HK α,p q (ω 1,ω 2) boundedness of oscillatory singular integral operators considered by D.
Pan所考虑过的振荡奇异积分算子在Herz型Hardy空间上的有界性,这些结果推广了[1]中相应的定
3) oscillating integrals
振荡积分
1.
In this paper those methods are used to get approximations of irregularly oscillating integrals, and in most cases their exact values are (gotten.
摄动方法中求定积分所定义的函数的渐进展开式的各种方法被用来求一类广义振荡积分的近似值 ,而且多数情况下得到的是精确
4) oscillatory integral
振荡积分
1.
Great impetus for the study of oscillatory integrals came with their applications to the as-ymptotics of Fourier transforms of special functions, Fourier integral operators and pseudo-differential operators.
振荡积分理论是现代调和分析的核心部分之一。
5) generalized Calderón-Zygmund kernel
多线性振荡奇异积分算子
1.
Weighted L~p-boundedness of multilinear oscillatory singular integral with generalized Calderón-Zygmund kernel
广义Calderón-Zygmund核的多线性振荡奇异积分算子的加权L~p-有界性(英文)
6) higher oscillatory integral
高振荡积分
1.
In the paper,computation of" ∫ b a f(x)Sin mx d x and ∫ b a f(x)cos mx d x"higher oscillatory integral using splint function is discussed.
本文提出利用样条函数计算∫baf(x)sinmxdx及∫baf(x)cosmxdx类型的高振荡积分,在每个比较小的子区间采用分部积分法,避免了整体利用分部积分需要计算函数在区间端点处的高阶导数,能提高计算的精确度。
补充资料:Fourier积分算子
Fourier积分算子
Fourier integral operator
关于M绷oB典则算子与又微分(或又伪微分(【3】))算子的交换公式. 设L(x.久一’D)为具有C优类实象征L(x,P)(见算子的象征(syln伙月of助opemtor))的微分算子,并设L(*,P)在A上为零.再设A与体积元而在HajrnUton方程组 立=丝立=_丝 d:刁尸’d:ax下不变,那么下列交换公式为真(这里甲‘C孑(A),又一的)二 乙(x,又一’刀)(K人中)(x)= 一牛、‘I;,+o(,一,)],(,) 葱又 _r dl召日,五(x.。、1 R甲=l共井一令乙二于于冬子=}中, L击2,昌日xj日Pj」了’其中d/d;为沿Harr山ton方程组的流的积分曲线的导数.关于展式(1)中的其余各项以及余项估计,见[3].方程R,一o称为活臀方谬(~port聊tion).此交换公式蕴涵下述结果:若R伞“O,则函数“二K,职为方程L(x,又一’D)u=o的形式渐近解. M脚oB典则算子方法使人们能解下述问题. l)对严格双曲偏微分方程组,对Din那与Max-忱U方程组,对弹性理论中的方程组,对女城由咨r方程等具有大范围(即任意有限时域)急速振荡初始数据的CauChy问题的渐近解的构造(见〔l],【6]一【9],又见拟经典遥近(q珑洛1~d巴粥iG扛appro汕nat沁n)),以及对某些混合型问题的解的构造(【4」). 2)自伴微分算子的本征值的级数的渐近展开的构造,这里的微分算子是关于相应Hail云lton方程组不变的压g卫们罗流形上定义的(见【l],【3]). 3)对严格双曲偏微分方程组的基本解的直到光滑函数的渐近展开的构造(见【1],【5],【6]). 4) Gn先”函数的短波渐近式,散射问题的解与Sch耐i卿r方程散射幅度的构造,以及谱函数的渐近式的构造(见[5」一!71) 关于具复纤维的助脚呼流形上M抑。B典则算子的新形式已经发展起来(见【8],【9」). Foud巴积分算子(Fo~讯忱孚祖。沐份仍r).设X,Y为R犷,,R少中有界域,N=N.+从,r=XxYx(R梦\笼0}),并设u(夕)6C了(Y).算子 (、。、(、卜二一二孺丁ff。:,、·,,,。, 乙7T’一产‘吧公 R;Y ·P(x,y,口)。(y)dydo(2)称为Fo~积分算子.这里毋(相函数)为实的且关于0为1阶正齐次的,甲任C伙r),并且当口笋O时丈(z,a),r:甲。(z,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条