说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 高斯网内格点问题
1)  Gauss circle problem
高斯网内格点问题
2)  circle problem
圆内格点问题
3)  Lattice points problem
格点问题
4)  Gauss Problem
高斯问题
1.
First,this paper establishes the optimization function by solving Gauss problem and Kepler s equations;Second,it does optimization to this problem with SQP method,then it has a conclusion by comparing the result with ESA that the result in this paper is better than ESA;Then,it does optimization with SQP and NSGA-Ⅱwhich launch window located between year 2010 and 2016.
首先通过求解高斯问题和开普勒方程,建立了优化模型,并针对ESA的数据采用SQP方法(序列二次规划)对该问题进行了优化,并把最终的优化结果与ESA的结果比较,找到了比ESA更优的解,然后运用SQP算法求解了以2010年到2016年之间为发射窗口的地火最优转移轨道,并用NSGA-Ⅱ(非劣分层遗传算法)算法对结果进行验证,最后对实验结果进行了分析与展望。
5)  internal net point
内网格点
6)  Gausspoints nets
高斯点网
补充资料:格点问题
      或称整点问题,研究一些特殊区域甚至一般区域中的格点的个数。格点又称整点,是指坐标均为整数的点。格点问题是数论中的一类重要问题,起源于以下两个著名问题的研究:①狄利克雷除数问题。设x>1,D2(x)表区域1≤u≤x,1≤v≤x,uv≤x上的格点个数。1849年,P.G.L.狄利克雷证明了 D2(x)=xlnx+(2у-1)x+Δ(x),这里,у是欧拉常数。这一问题的目的是要求出使余项估计 成立的λ的下确界θ。因为,其中d(n)是除数函数,所以把这一格点问题称为狄利克雷除数问题。 ②圆内格点问题。 设x>1,A2(x)表圆上的格点数。C.F.高斯证明了A2(x)=πx+R(x),这里。求使余项估计成立的λ的下确界α的问题, 称为圆内格点问题或高斯圆问题。显有,这里r2(n)是的全体整数解的个数。利用初等方法,1903年,Γ.Ф.沃罗诺伊证明了θ ≤1/3;1906年,W.谢尔平斯基证明了α≤1/3;利用较深的分析方法,1922~1937年,J.G.范·德·科普特首先证明了 α≤37/112,θ ≤27/82;1934~1935年,E.C.蒂奇马什证明了α≤15/46;1942年,华罗庚证明了α≤13/40;1963年,陈景润、尹文霖证明了α≤12/37;1950年迟宗陶和1953年H.-E.里歇先后证明了θ ≤15/46,他们所用的方法都是闵嗣鹤提出的;1963年,尹文霖证明了θ≤12/37;1985年, Γ.Α. 科列斯尼克证明了θ≤139/429,1985年,W.G.诺瓦克证明了α≤139/429。另一方面,1916年G.H.哈代已证明α≥1/4;1940年,A.E.英厄姆已证明θ≥1/4。一些数学家还对余项Δ(x)和R(x)的均值做了估计。猜测θ=α=1/4,但是至今未能证明。这两个问题的直接推广是k维除数问题、 球内格点问题以及k 维椭球内的格点问题等。对一般格点问题也有不少研究。关于这些问题中国数学家做了不少工作。
  
  关于一般平面区域的格点问题,M.V.贾尔尼科推广高斯的方法后于1924年证明了:设Г是可求长的约当闭曲线,其长为l,其所围面积为A;N是Г内及其上的格点数,则有│N-A│
  
  

参考书目
   华罗庚著:《指数和的估计及其在数论中的应用》,科学出版社,北京,1963。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条