1) prey system
被捕食系统
1.
This paper discusses the randomized predator-prey and prey system of half-ratio,the boundedness under the meaning of the moment of the positive solution to this stochastic differential equation is given by using both stochastic differential equation theory and probabilistic method.
文中研究随机半比例型捕食与被捕食系统,利用随机微分方程、概率论方法证明此随机微分方程正解在矩意义下有界性。
2) predator-prey system
捕食-被捕食系统
1.
The stability and Hopf bifurcation of a predator-prey system with time delay and Holling type functional response function;
具时滞和Holling功能性反应的捕食-被捕食系统的稳定性及Hopf分支
2.
Saddle-node bifurcation of a predator-prey system;
一类捕食-被捕食系统的鞍结点分支
3.
Stability and Hopf bifurcation of a class of predator-prey system with delay was discussed.
通过对一类具时滞的捕食-被捕食系统的稳定性与Hopf分支研究,给出了系统正的非平凡平衡态稳定性的条件,同时得到了出现Hopf分支的分支值。
4) predator prey system
捕食与被捕食系统
1.
By imposing external influence on the Lokta Volterra predator prey system with periodic coefficients, a predator prey system with impulsive effects is obtained.
通过对具有周期系数的 Lotka- Volterra捕食与被捕食系统施加外界的干涉 ,得到了带有脉冲的捕食与被捕食系统 。
2.
In this paper we consider the global qualitative behavior of a ratio dependent predator prey system, which both predator and prey have density restrict by means of Poincare Bendixson theorem and Dulac criterion.
本文研究了依赖比率的捕食与被捕食系统的全局定性性态 ,这里捕食与被捕食者均为密度制约
3.
In this paper, a predator prey system with Holling type IV functional response:p(x)=xa+bx+x 2 is considered.
考查了一类带Hollingtype IV功能反应的捕食与被捕食系统的分支 ,包括鞍结点分支 ,Hopf分支 ,同宿分支 ,以及尖点型的余维 2分
5) Leslie predator-prey system
Leslie捕食与被捕食系统
1.
By using a continuation theorem based on coincidence degree theory,we study the existence of positive periodic solution for a delayed non-autonomous Leslie predator-prey system with impulsive effect.
该文利用重合度理论中的延拓定理,讨论具脉冲效应的时滞Leslie捕食与被捕食系统正周期解的存在性,得到了系统正周期解存在的充分条件。
2.
The paper discusses a class of discrete Leslie predator-prey system.
该文讨论了一类离散Leslie捕食与被捕食系统,获得了该系统的持久性,当系统为周期系统时,得到了它的周期解的存在性,并且在某些条件下,该周期解是全局稳定的。
6) prey-predator system of first order
一阶捕食-被捕食系统
补充资料:被被
1.长大貌。《楚辞.九歌.大司命》:"灵衣兮被被,玉佩兮陆离。"王逸注:"被被,长貌,一作披。"姜亮夫校注:"灵衣,当作云衣……言余衣被云衣,则披然而长,玉佩则陆离而美。"一说为飘动貌。王夫之通释:"被音披。被被,犹言翩翩。"按,《文选.潘岳<寡妇赋>》"仰神宇之寥寥兮,瞻灵衣之披披"李善注引《楚辞》作"披披"。刘良注:"披披,动儿。"
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条