1) slant submanifold
斜子流形
1.
The semi-slant submanifold is a generalization of holomorphicsubmanifold and totally real submanifold.
半斜子流形是全纯子流形和全实子流形的推广,本文主要讨论了Kaehler乘积流形的F-不变乘积半斜子流形,并对其分类;再推广到一般的F-不变半斜子流形的情况,并对其分类。
2.
Fernandez have studied and characterized slant submanifolds of Sasakian manifolds and they have given some interesting examples of such immersions.
Chen在复流形的子流形上引入了斜浸入的概念(见[16]),在此之后斜子流形的微分几何性质引起了许多学者的关注。
2) semi-slant submanifold
半斜子流形
1.
The semi-slant submanifold is a generalization of holomorphicsubmanifold and totally real submanifold.
半斜子流形是全纯子流形和全实子流形的推广,本文主要讨论了Kaehler乘积流形的F-不变乘积半斜子流形,并对其分类;再推广到一般的F-不变半斜子流形的情况,并对其分类。
3) P Sasakian manifold
斜半不变子流形
1.
In this paper we introduce and study the skew semi invariant submanifolds of a P Sasakian manifold, we obtain a sufficient condition for a submani fold of a P Sasakian mani fold to be a skew semi invariant submanifold.
定义并讨论了P-Sasakian流形的子流形为斜半不变子流形的一个充分条件,同时也得到了这类子流形的曲率方面的一些重要结
4) diagonal flow rotor
斜流转子
1.
PIV experimental research of the tip shedding vortex flow of the leading edge skewed-swept diagonal flow rotors;
前缘弯掠(扭)斜流转子叶尖脱落涡的PIV研究
5) Egg shape submanifold
卵形子流形
6) submanifold
['sʌb'mænifəuld]
子流形
1.
Stable Integral Currents in Submanifolds Immersed in Euclidean Space;
欧氏空间的子流形中的稳定积分流
2.
Important theorem on submanifold in space form with paralled Ricci curvature;
常曲率空间中Ricci曲率平行的子流形的一个重要定理及应用
3.
Curvature and geometric property of submanifolds in Euclidean spaces;
欧氏空间中子流形的曲率与几何性质
补充资料:子流形
见微分流形。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条