1) ab initio molecular dynamics
从头分子动力学
2) ab initio calculation
从头计算
1.
Mass spectrum of laser ionized diethyl ether clusters studied with ab initio calculation;
乙醚团簇的激光电离质谱及从头计算
2.
Multiphoton ionization and ab initio calculation studies of O-chlorophenol/water clusters at 355 nm;
355nm激光下邻氯苯酚-水团簇的多光子电离与从头计算研究
3.
Ab initio calculation method of quantum chemistry was used to optimize several typical binary alkali metals silicates model clusters under restricted Hartree-Fock method with 6-31G(d) basis sets.
应用量子化学从头计算方法研究了二元碱金属硅酸盐的精细结构,对典型的系列二元碱金属硅酸盐离子簇模型采用6-31G(d)基组和闭壳层Hartree-Fock(RHF)方法优化构型,并计算了二元碱金属硅酸盐的拉曼光谱,采用硅氧四面体应力指数这一精细结构参数分析和讨论了计算得到的非桥氧高频区对称伸缩振动频率和其拉曼光学活性,以及不同阳离子对该拉曼光学活性的影响。
3) de novo formation
从头合成
1.
The effects of chlorine speciation and physical chemistry characteristic of fly ash on the de novo formation of PCDD/Fs were studied in a tubular oven.
氯源是二噁英生成的关键因素之一,该文在管式炉中研究了飞灰中的氯形态以及物理化学特性对从头合成二噁英的影响,利用高分辨色谱/低分辨质谱(HRGC/LRMS)测定了气相以及固体残渣中的二噁英,试验结果表明,飞灰中的无机氯含量高于有机氯含量,而有机氯中,可以提取有机氯含量高于不可提取有机氯含量,飞灰中的不可提取有机氯是最能促进二噁英生成的氯源。
2.
The results indicated that the moisture played a positive role in facilitating de novo formation, thus enhanced the total I-TEQ.
采用垃圾焚烧飞灰在小型管式炉上进行了二(口恶)英的从头合成试验,通过控制水分在气流中的比例,研究不同的水分对二(口恶)英的总量,毒性当量以及分布特性的影响。
4) ab initio calculation
从头算
1.
Multiphoton ionization mass spectrum of ammonia-methanol complex cluster and ab initio calculation;
氨与甲醇混合团簇的多光子电离质谱及从头算研究
2.
The multiphoton ionization and ab initio calculation methanol and diethyl ether cluster;
甲醇-乙醚团簇的多光子电离和从头算(英文)
3.
Using the density function theory(DFT) and ab initio calculation,the reaction of CH radical with O2 was studied.
应用量子理论从头算和密度泛函理论(DFT)对双自由基CH(X2Π)与O2(X3∑g-)的反应机理进行了研究。
5) Ab initio method
从头算
1.
Ab initio method with effective core potential (ECP) approximation,has been employed to study the reaction mechanisms of some elementary reactions of the olefin hydroformylation cycle catalyzed by carbonyl cobalt at retricted Hartree Fock(RHF) level.
采用有效核势能近似(ECP)从头算方法,在HF/LANL2DZ水平下研究了羰基钴催化的氢甲酰化反应循环中的羰基插入、H2 氧化加成和脱氢还原系列基元反应步骤的反应机理。
6) ab initio CASSCF
从头算CASSCF
参考词条
补充资料:分子反应动力学
化学动力学的一个分支,是研究化学反应基元过程分子机理的学科。它用理论物理的方法计算处于某一量子态的分子进行单次碰撞并发生化学反应的几率(或截面)和产物分子的量子态、空间分布及反应速率常数等。这些研究提供了如何控制和利用化学反应的理论依据。例如,为了使吸能反应I+HCl─→HI+Cl能够发生,增加 HCl的振动能比增加其平动能更为有效。它的逆反应
Cl+HI─→HCl+I是一个放能反应,分子反应动力学能够提供产物分子HCl振动态"布居反转"的信息,从而为寻找化学激光工作物质提供了依据。它还能提供反应体系"碰撞对"真实碰撞过程的信息──"碰撞对"是直接反应还是经过一个络合物的反应。
理论计算方法 20世纪30年代,以美国物理化学家H.艾林为代表的学派,用海特勒-伦敦计算H2的方法建立了H+H2反应体系的第一个势能面,借助统计力学方法计算了在该势能面上的热平衡反应速率常数,称为绝对反应速率理论或过渡态理论。
分子反应动力学的理论计算方法分为三部分:①化学反应体系势能面的量子化学计算;②反应截面(或几率)的计算;③由反应截面计算反应速率常数。因此,也可以说分子反应动力学是研究反应体系在热能面上运动过程的学科。在确定的势能面上求解核的运动方程,既可以用经典力学方法,也可以用量子力学方法。
理论 严格的理论是量子力学散射理论。分子反应过程的全部信息包含在波函数中,在给定能量下,求解满足一定渐近条件的薛定谔方程得到波函数,借助入射波和出射波的几率流密度守恒的关系,就可以得到反应截面(或几率)。
以A+BC─→AB+C双分子共线交换反应为例 (共线反应是指反应体系的三个原子沿直线相互接近的反应),该反应体系的坐标系见图1。
在非相对论近似下,反应体系的哈密顿算符H 写作:
式中μA,BC和μBC分别为A和BC,B和C之间相对运动的约化质量;mA、mB、mC分别为原子A、B、C的质量;h为普朗克常数;Vα和Vγ为有效势函数。
核运动的薛定谔方程为:
Hψ=Eψ (3)
渐近条件为:
式中α为反应体系的初始排布,即A+BC;nα或n为BC的内量子数,nα为始态,n为反射态;γ表示终态排布,即C+AB;n为AB分子的内量子数,每一种排布和分子的一组内量子数(如α,nα)称为反应体系的一个通道;kα或kγ为原子与双原子分子相对运动的波数;为双原子分子的内态波函数;称为散射幅。能量守恒条件要求:
(5)
式中啚=h/2π;E 为能量。由入射波和出射波几率流密度守恒的条件,就可以得到由通道(α,nα)到通道(λ,nλ)的反应几率为:
式中v为(λ,nλ)通道中反应体系的相对运动速度。
H+H2(n)─→H2+H共线交换反应几率的数值计算结果见图2。
对于实际的三维化学反应,用上面的方法可以得到反应截面随碰撞能变化的关系。用量子散射理论求反应截面(或几率)的关键是求散射幅,一般是在自然反应坐标中用数值求解耦合微分方程。这是一项十分复杂的计算工作。
当反应体系的质量较大,德布罗意波长很短时,用经典轨迹法或者用准经典轨迹法,即对反应物初态分布和产物终态分布作量子校正的经典轨迹法研究反应体系沿势能面的运动,往往也能得到比较满意的定性或半定量的结果。
展望 由于分子反应动力学的深入发展,对分子反应散射的研究引起了人们极大的兴趣。一方面,分子化学反应的实验研究为化学反应机理的研究提供了详细的信息;另一方面,对反应散射的理论计算,既可以同实验结果互相对比,又可以给予实验结果以清楚的物理解释。例如,对F+H2反应体系的实验和理论研究,发现了产物分子振动态"布居反转"现象,导致了化学激光器的产生,从而推动了态-态反应速率的研究,使分子化学反应动力学发展到态-态分子反应动力学的新阶段。
参考书目
R. D. Levine and R. B. Bernstein,Molecular Reaction Dynamics,Oxford Univ.Press,Oxford,1974.
Cl+HI─→HCl+I是一个放能反应,分子反应动力学能够提供产物分子HCl振动态"布居反转"的信息,从而为寻找化学激光工作物质提供了依据。它还能提供反应体系"碰撞对"真实碰撞过程的信息──"碰撞对"是直接反应还是经过一个络合物的反应。
理论计算方法 20世纪30年代,以美国物理化学家H.艾林为代表的学派,用海特勒-伦敦计算H2的方法建立了H+H2反应体系的第一个势能面,借助统计力学方法计算了在该势能面上的热平衡反应速率常数,称为绝对反应速率理论或过渡态理论。
分子反应动力学的理论计算方法分为三部分:①化学反应体系势能面的量子化学计算;②反应截面(或几率)的计算;③由反应截面计算反应速率常数。因此,也可以说分子反应动力学是研究反应体系在热能面上运动过程的学科。在确定的势能面上求解核的运动方程,既可以用经典力学方法,也可以用量子力学方法。
理论 严格的理论是量子力学散射理论。分子反应过程的全部信息包含在波函数中,在给定能量下,求解满足一定渐近条件的薛定谔方程得到波函数,借助入射波和出射波的几率流密度守恒的关系,就可以得到反应截面(或几率)。
以A+BC─→AB+C双分子共线交换反应为例 (共线反应是指反应体系的三个原子沿直线相互接近的反应),该反应体系的坐标系见图1。
在非相对论近似下,反应体系的哈密顿算符H 写作:
式中μA,BC和μBC分别为A和BC,B和C之间相对运动的约化质量;mA、mB、mC分别为原子A、B、C的质量;h为普朗克常数;Vα和Vγ为有效势函数。
核运动的薛定谔方程为:
Hψ=Eψ (3)
渐近条件为:
式中α为反应体系的初始排布,即A+BC;nα或n为BC的内量子数,nα为始态,n为反射态;γ表示终态排布,即C+AB;n为AB分子的内量子数,每一种排布和分子的一组内量子数(如α,nα)称为反应体系的一个通道;kα或kγ为原子与双原子分子相对运动的波数;为双原子分子的内态波函数;称为散射幅。能量守恒条件要求:
(5)
式中啚=h/2π;E 为能量。由入射波和出射波几率流密度守恒的条件,就可以得到由通道(α,nα)到通道(λ,nλ)的反应几率为:
式中v为(λ,nλ)通道中反应体系的相对运动速度。
H+H2(n)─→H2+H共线交换反应几率的数值计算结果见图2。
对于实际的三维化学反应,用上面的方法可以得到反应截面随碰撞能变化的关系。用量子散射理论求反应截面(或几率)的关键是求散射幅,一般是在自然反应坐标中用数值求解耦合微分方程。这是一项十分复杂的计算工作。
当反应体系的质量较大,德布罗意波长很短时,用经典轨迹法或者用准经典轨迹法,即对反应物初态分布和产物终态分布作量子校正的经典轨迹法研究反应体系沿势能面的运动,往往也能得到比较满意的定性或半定量的结果。
展望 由于分子反应动力学的深入发展,对分子反应散射的研究引起了人们极大的兴趣。一方面,分子化学反应的实验研究为化学反应机理的研究提供了详细的信息;另一方面,对反应散射的理论计算,既可以同实验结果互相对比,又可以给予实验结果以清楚的物理解释。例如,对F+H2反应体系的实验和理论研究,发现了产物分子振动态"布居反转"现象,导致了化学激光器的产生,从而推动了态-态反应速率的研究,使分子化学反应动力学发展到态-态分子反应动力学的新阶段。
参考书目
R. D. Levine and R. B. Bernstein,Molecular Reaction Dynamics,Oxford Univ.Press,Oxford,1974.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。