说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 解析Toenlitz算子
1)  analytic Toeplitz operators
解析Toenlitz算子
2)  analytic operator
解析算子
3)  the analytic Toeplitz operator
解析Toeplitz算子
1.
This paper first gives a complete description of the reducing subspaces of the analytic Toeplitz operator with symbol z N on N φ-type quotient modules on the torus,and then researches the reducible problem of the analytic Toeplitz operator with finite Blaschke product symbol on N φ from the theory of super-isometric dilatable operators.
给出了Nφ-型商模上符号为zN的解析Toeplitz算子的约化子空间的完备刻画,然后从超等距膨胀算子理论的角度研究Nφ-型商模上符号为一般有限Blaschke积的解析Toeplitz算子的约化子空间的存在性问题。
4)  analytic Toeplitz operator
解析Toeplitz算子
1.
It is proved that there are some Hypercyclic and Supercyclic operators in the class of co-analytic Toeplitz operators in Hardy space and Bergman space.
首先运用函数论的方法,阐述了在Hardy空间以及Bergman空间上,当符号φ满足某种条件时,余解析Toeplitz算子Tφ为Hypercyclic或Supercyclic算子。
2.
A new method is used to extend the problem about reducing subspaces of analytic Toeplitz operator on disc.
使用一种新的方法推广了单位圆盘上的解析Toeplitz算子Tzn的约化子空间问题。
3.
Famous von Neumann-Wold Theorem tells us that each analytic Toeplitz operatorwith n+1-Blaschke factors is unitary to n+1 copies of unilateral shift on Hardy space.
著名的von Neumann-Wold定理告诉我们:Hardy空间上每个带n+1-Blaschke因子的解析Toeplitz算子酉等价于n+1个单边移位算子的直接和。
5)  generalized-analytic operator
反解析算子
6)  operator valued analytic function
算子值解析函数
1.
A class R b β(A,B) of p valent operator valued analytic functions is introduced, where for any f(z)∈ R b β(A,B) having the following formf(z)=z p+∑∞n=1A n+p z n+p (z∈Δ,Α n+p ∈B(H)).
引入一类 p 叶算子值解析函数Rbβ(A ,B) ,对于任一 f(z)∈Rbβ(A ,B)具有如下形式 :f(z) =zp+ ∑∞n =1An+pzn+p (z∈Δ ,Αn+p ∈B(H) ) 。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条