1) Quasi Z-minimal Sets
拟Z-极小集
1.
In this paper, We define Quas Z-minimal Sets, the equivalent characterization of the Quasi Z-minimal Sets is introduced, and the mapping preserving Quasi Z-minimal Sets is given, so the two corresponding extention theorems are made by Rudin lemma.
定义了拟Z-极小集,并证明了拟Z-连续Domain的每个元都有拟Z-极小集,在拟Z-连续Domain中,给出了保拟Z-极小集映射的几个等价刻画,并且在此基础上,运用Rudin性质,得到了拟Z-连续Domain上的两个相应扩张定理。
2) Z-minimal set
Z-极小集
1.
For a general subset system Z,the concept of Z-minimal sets is defined,some characteristics of Z-continuous posets are discussed,the equivalent characterizations between the mapping preserving the Z-minimal sets and the mapping preserving _Z and the Z-supremum of Z-continuous posets are given,so the corresponding extension theorem is made.
对于一般的子集系统Z,引入了Z-极小集的概念,给出了Z-连续偏序集中保Z-极小集与保Z-并和Z间的等价刻划及其有关性质,得到了关于保Z-极小集映射的扩张定理。
3) quasi-minimal set
拟极小集
4) quasiminimal sets
拟定向极小集
1.
This paper defines quasiminimal sets,the equivalent characterization of the quasiminimal sets is introduced,and the mapping preserving quasiminimal sets is given,so the two corresponding extention theorems are made.
定义了拟定向极小集,并证明了拟连续Dom ain的每个元都有拟定向极小集,在拟连续Dom ain中,给出了保拟定向极小集映射的几个等价刻画,并且在此基础上得到了拟连续Dom ain上的两个相应扩张定理。
5) Z-precontinuity
Z-拟连续偏序集
6) likely limit sets
拟极限集
1.
We consider the likely limit sets of 3-order nonsingle-valley Feigenbaum s maps and their Hausdorff dimensions.
本文讨论了3阶非单谷Feigenbaum映射的拟极限集及其Hausdorff维数。
2.
On the basis of considering the likely limit sets of a 2q-order(q≥1) single-valley Feigenbaum s map and its Hausdorff dimension,the construction of likely limit sets is described,and the relative expression of its exact Hausdorff dimension is obtained.
讨论了2q阶(q≥1)单谷Feigenbaum映射的拟极限集及其Hausdorff维数,得到其结构,并给出了其准确的Hausdorff维数的关系式。
3.
On the basis of considering the likely limit sets of a 4-order Feigenbaum s map and their Hausdorff dimension, we have proved that for any t∈(0,log_(3+1)2), there always exits such a 4-order nonsingle-valley Feigenbaum s map which has a likely limit set with Hausdorff dimension t.
讨论一类 4阶 Feigenbaum映射的拟极限集及其 Hausdorff维数 ,并证明对任意t∈ ( 0 ,log 3+12 ) ,总存在一类具有简单轨的 4阶非单谷 Feigenbaum映射 ,它有一个以 t为Hausdorff维数的拟极限集 。
补充资料:极小集
极小集
minimal set
极小集【而顽加目set;MH皿“M~oeM肋撰c卿1 l)R~nn空间中的极小集是极小曲面(而月面目51止自仗)的推广极小集是Rier姐nn空间M”中的灭维闭子集X。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条