1) L~p error estimates
L~p误差估计
2) L~∞-error estimate
L~∞-误差估计
3) L~∞-error estimates
L~∞误差估计
4) L 2 error estimates
L~2-误差估计
5) L~1-norm error estimate
L~1模误差估计
1.
This thesis is concerned with L~1-norm error estimates for viscosity approximations of theinitial-boundary value problem of scalar conservation laws with non-convexity conditions.
本文研究具有非凸条件的单个守恒律初边值问题的粘性逼近解的L~1模误差估计,在流函数有一个拐点的条件下,就初始值为两段常数和边界值为常数的情形,根据弱熵解的几何结构,使用匹配行波解方法导出其粘性逼近解和无粘性解间的L~1模误差界为O(ε~(1/2)+ε|lnε|。
补充资料:水文估计量的抽样误差
水文随机变量的分布函数中的参数(或参数的函数)的估计量的均方根误差。水文随机变量x的分布函数F(x,θ) 中所含的参数θ,一般皆为未知数, 需根据样本资料(x1,x2,...,xn)予以估计。换言之,为进行参数估计,必须构造一个样本的函数,称为估计量,记为(x1,x2,...,xn),从而当有一具体样本(x1,x2,...,xn)之后,就可算出(x1,x2,...,xn),做为θ的估计值。由于样本为随机变量,可以证明,作为样本函数的估计量(x1,x2,...,xn),也是随机变量,故有其概率密度函数,记为g(,θ),称为抽样分布(见上页图)。它表示估计量取各种不同数值的可能性大小。虽然任一估计量取得真值θ的概率都为零, 但不同的估计量其平均误差的大小还是不同的。这个平均误差,通常以估计量对参数真值θ的均方根误差来代表,可表示为:
式中E为取期望值的符号,根据定义它等于式中右侧的积分。粗略地说,g(,θ)的图形对θ越集中, σ孌越小,反之则越大。
在水文统计中,需要估计的往往不仅是参数,还有参数的某种函数,例如x的p分位数xp(见水文随机变量)。在由样本求得了θ的估计量后, 就可进一步求得xp的估计量憫p。类似于对σ孌的讨论,通常以估计量憫p对真值xp的均方根误差来代表憫p的平均误差,记为σ憫p。σ孌特别是σ憫p的数值,在分布函数及估计方法都很简单时,可用分析方法采用近似公式予以计算。在分布函数或估计方法较复杂时,用近似公式计算,误差较大。这时可用蒙特卡洛方法求出其近似值。水文统计学研究的基本内容之一,就是要设法提出一种抽样误差最小的估计量。
式中E为取期望值的符号,根据定义它等于式中右侧的积分。粗略地说,g(,θ)的图形对θ越集中, σ孌越小,反之则越大。
在水文统计中,需要估计的往往不仅是参数,还有参数的某种函数,例如x的p分位数xp(见水文随机变量)。在由样本求得了θ的估计量后, 就可进一步求得xp的估计量憫p。类似于对σ孌的讨论,通常以估计量憫p对真值xp的均方根误差来代表憫p的平均误差,记为σ憫p。σ孌特别是σ憫p的数值,在分布函数及估计方法都很简单时,可用分析方法采用近似公式予以计算。在分布函数或估计方法较复杂时,用近似公式计算,误差较大。这时可用蒙特卡洛方法求出其近似值。水文统计学研究的基本内容之一,就是要设法提出一种抽样误差最小的估计量。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条