说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义半变系数模型
1)  Generalized semi-varying coefficient models
广义半变系数模型
2)  generalized varying-coefficient model
广义变系数模型
1.
A quasi-likelihood estimation is considered for nonparameter coefficient func- tion in generalized varying-coefficient model with response variables missing at random.
在响应变量随机缺失时,利用拟似然方法给出了广义变系数模型中非参数函数系数的估计。
3)  generalized semiparametric models
广义半参数模型
1.
We propose a local quasi-likelihood weighted estimator for generalized semiparametric models when the Covariates are missing at random.
在协变量随机缺失条件下,研究了广义半参数模型的加权拟似然估计方法,给出了未知参数与非参数回归函数的估计。
2.
We propose a local imputation quasi-likelihood estimator for generalized semiparametric models when the responses are missing at random.
在响应变量随机缺失时,运用借补拟似然方法估计广义半参数模型的未知参数和非参数回归函数,验证了所给出的估计具有渐近正态性,并进行了模拟研究。
4)  varying-coefficient generalized linear model
变系数广义线性模型
1.
The classical generalized linear model is generalized in this article by assuming the coefficients of the regressors to be arbitrary functions of the points in some metric space and a new type of regression model, called the varying-coefficient generalized linear model, is proposed.
本文以经典广义线性模型为基础,通过假定其中的回归变量的系数是某一度量空间中点的任意函数,提出了一类有广泛应用背景的变系数广义线性模型,增加了模型的灵活性和适应性,同时也适用于空间数据的统计分析。
5)  Generalized spatial varying-coefficient models
广义空间变系数模型
6)  semi-parametric generalized additive model(GAM)
半参数广义相加模型(GAM)
补充资料:弹性力学广义变分原理
      弹性力学最小势能原理和弹性力学最小余能原理的推广,其特点是,变分式中各量都可有独立的变分,并且事前不受任何限制。在弹性力学空间问题中,最一般的广义变分原理可叙述为:弹性力学空间问题的解必须满足弹性体的广义势能变分为零的条件,该条件又称为驻值条件,即
  
  
  
  
  
   δ∏3=0,
  
  
  
  (1)式中∏3为弹性体的三类变量广义势能,其表达式为:
  
  
   式中u(εij)为应变能密度;εij为应变分量;fi为体积力分量;ui为位移分量;σij为应力分量;pi为面力分量;Ω为弹性体所占的空间;B1为位移边界面;B2为受力边界面;ūi和圴i为边界上给定的位移分量和面力分量;dB为面积微元;式中重复下标表示约定求和。在变分式(1)中,ui、εij、σij等15个函数都可有独立的变分,并且事前没有任何附加条件(表面力pi看作是从属于应力σij的量)。从条件(1)可推出弹性力学的全部基本方程,包括应变-位移关系、应力-应变关系、平衡方程和边界条件。上述变分原理的独立变量有位移、应变、应力三类,因此称为三类变量广义变分原理。它是中国力学家胡海昌于1954年首先提出的,日本的鹫津久一郎于1955年也独立地得到这一原理,所以又称胡-鹫津原理。
  
  弹性力学广义变分原理有一种稍弱的形式,即二类变量广义变分原理,又称为赫林格-瑞斯纳原理。它由E.赫林格于1914年和E.瑞斯纳于1950年分别独立提出,其数学表达式为:
  
  
  
  
  
    δ∏2=0,
  
  
   (3)式中
  
  
    式中uij)为余能密度。∏2中的独立自变函数有ui和σij两类共九个。将应变-位移关系代入式(2),消去εij,就可以得到式(4)。 因此二类变量广义变分原理是三类变量广义变分原理的一个特殊情况。
  
  在有限元法和工程弹性理论中,广义变分原理有广泛的应用。例如,在板壳弯曲的有限元计算中,用它处理变形的不协调性,可得到较好的结果。对于解决几何非线性问题,胡-鹫津原理是一个有力的工具。在工程弹性理论中,广义变分原理可用于推导各种近似理论;在弹性振动和稳定理论中,可用于求固有频率和临界载荷,并能获得较好的结果。
  
  

参考书目
   胡海昌著:《弹性力学的变分原理及其应用》,科学出版社,北京,1981。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条