说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 不可约C_0半群
1)  the irreducible C_0 semigroup
不可约C_0半群
2)  irreducible semigroup
不可约半群
3)  C 0 semigroup
C_0半群
4)  C_0 semigroup
C_0半群
1.
By using the method of functional analysis,especially,the linear operator theory and C_0 semigroup theory on Banach space,the well-posedness of solution and the existence of positive solution are studied.
使用泛函分析方法,特别是Banach空间上的线性算子理论和C_0半群理论,证明了系统解的适定性以及正解的存在性,证明了系统解的渐近稳定性,指数稳定性以及严格占优本征值的存在性,证实了实际问题中相关假设的合理性。
2.
We give a complete introduction about C_0 semigroups in Banach space.
本章对Banazh空间中的C_0半群给出一个较完整的介绍,主要包括:引言,算子半群的预备知识,算子半群的定义及性质,强连续半群与Hille-Yosida定理,半群表示。
5)  C_0-semigroup
C_0-半群
1.
Irreducibility of the Positive Contraction C_0-semigroup Generated by M/G/1 Queueing Operator;
M/G/1排队系统算子生成正压缩C_0-半群的不可约性
2.
This paper discusses the existence of solutions of initial value problem for semilinear evolution equation with noncompact semigroup u (t)+Au(t)=f(t, u(t)), t≥0; u(0)=x_0 in a Banach space E, where -A is the infinitesimal generator of an equicontinuous C_0-semigroup, and f: [0, ∞)×E→E is continuous.
本文研究Banach空间E中具有非紧半群的半线性发展方程初值问题u′(t)+Au(t)=f(t,u(t)),t≥0;u(0)=x_0解的存在性,其中-A为E中等度连续C_0-半群的生成元,f:[0,∞)×E→E连续。
3.
In this paper we have proved that a C--semigriop on Banach space X can be-come of C_0-semigroup by means of the method to restrict the C-semigroup onto a smallerBanach space F with a stronger norm; and they have the same analyticity.
在这篇文章中证明了C-半群在限制空间中为C_0-半群,首次讨论了C-半群的解析
6)  C 0 semigroup
C_0-半群
补充资料:不可约矩阵群


不可约矩阵群
irreducible matrix group

不可约矩阵群「如目仪汤晓皿trixgr说甲;Ite即I.即皿M朋Ma印~圈印担nal 域k上nx”矩阵的群G,在一般线性群(罗优m!haear脚uP)GL(。,k)中不能用共扼将G的元素同时化成半约化形式 “A*“ “OB“,其中A及B是固定维数的方块.更确切地,称G在域k上是不可约的(i扣出ucible).用变换的语言表达:有限维空间V的线性变换群G称为不可约的,若V是非零的极小G不变子空间.代数封闭域上交换的不可约矩阵群是一维的.若域上矩阵群在任何扩张域上不可约,则称为绝对不可约的(a忱olute】yirr司u-cib】e).设k是代数封闭域,则对每个群G生GL(n,k),下列条件是等价的:l)G在k上不可约;2)G含有nZ个k上线性无关的矩阵;3)G是绝对不可约的.于是域介上绝对不可约性等价于k的代数闭包上的不可约性.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条