1) Polyhedral Formula
多面体公式
2) Euler polyhedron formula
欧拉多面体公式
3) polygon area formula
多边形面积公式
4) convex combination of polynomials
多项式凸多面体
5) polynomial polyhedro
多项式多面体
6) section cone formula
截面圆锥体公式
补充资料:抽象多面体
抽象多面体
polyhedron, abstract
抽象多面体[卯吵ed阴,abstract;朋二。3八p] 某一R”中凸多胞形的一个局部有限族的并.凸多胞形(convex polyt0Pe)是指有限个闭半空间的有界的交.族的局部有限性(focal fixliteness)是指R”中的每一点有一个仅与有限个多胞形相交的邻域.紧多面体(compact polylledron)是有限个凸多胞形的并.多面体的维数(dilnension of ap川尹犯dron)是构成萝面袜的多施形的最大维数.(抽象)多面体的任一开子集,特别地,Euc记空问的开子集,是多一面体.其他的多面体是:紧多面体上的锥(co谧)和双角锥(suspension).简单的例子(开区间上的锥)表明紧多面体和非紧多面体的并不一定是多面体.多面体Q的子多面体(subpolylledron)是指位于多面体Q中的任一多面体p.有时限于考虑闭子多面体.多面体尸CR”中的每一点“有一个在尸中的邻域,它是以“为顶点且具有紧的底的R‘,中的锥.这一性质是一个特征:R”中的任意子集,其每一点有一个底为紧的锥形邻域,则该子集是一个多面体. 任意紧多面体尸都可分解成有限个闭单形,使得其中任意两个单形或者不相交,或者相交于一个公共面.在非紧多面体的情形要求单形族是局部有限的.这一分解称为多面体的直线三角剖分(r“山ine盯trian-gu肠tjon).一个给定的多面体的任意两个三角剖分有一个公共的重分.如果P是多面体Q的一个闭子多面体,则尸的任一三角剖分K可扩充成Q的一个三角剖分L,这时,称所得到的几何单纯复形对(L,K)三角剖分对(Q,尸).一个多面体PCR”到多面体Q CR”中的映射f称为分片线性映射(p记ce-wise一haear mapp哩)(或pl映射(pl~n坦pp吨)),如果f对于尸和Q的某些三角剖分是单纯的(见单纯映射(s皿Plicial仃必PPing)).一个等价定义是:f为分片线性,如果f是局部锥形的,即,点a‘尸有一个锥形邻域N=a★L,使得f(又a十产x)=几f(a)十召j(x)对任意x6L和又,“)0,又+产二1成立.映射f是分片线性的一个充分必要条件是它的图象rJC=R”xR月是一个多面体. 分片线性映射的叠加是分片线性的.可逆分片线性映射f的逆映射是分片线性的,这时称.厂是pl同胚(pl一ho服。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条