2) common mean matrix parameter
共同均值矩阵参数
1.
This paper discusses Φ admissibility and A admissibility in all classes of estimates for an estimate ∑mi=1A iY i+C of the linear estimable function SΘ under the model Y i=XΘ+ε i, i=1,…,m, where ε i is an n×k unobservable random matrix, Eε i=0, Eε iε j′=0 when i≠j, Var ( ε i )= VI k , i=1,…,m; X and V≥0 are known matrices; Θ is the common mean matrix parameter.
讨论了多元线性模型中共同均值矩阵参数Θ及其线性组合函数SΘ的线性估计∑mi=1AiYi+C在一切估计类中的Φ-可容许性和A-可容许性问题,得到了∑mi=1AiYi+C是SΘ的A-可容许性估计的一些充分条件和必要条件。
2.
Admissibility for linear estimators of the common mean matrix parameter in a general multivariate linear model;
对于一般未知方差多元线性模型,讨论了共同均值矩阵参数的可估函数SXΘ的线性估计在线性估计类中的可容许性问题,证明了在本文所给的不同优良准则下可容许性是等价的,并得到了它们的充要条件。
3) mean matrix
均值矩阵
1.
The admissible linear estimates of the mean matrix on the similar normal distribution;
矩阵正态分布均值矩阵的k-容许线性估计
2.
The admissible linear estimates of the mean matrix on the matrix normal distribution;
矩阵正态分布均值矩阵的容许线性估计 (Ⅱ)
4) mean value-gradient co-occurrence matrix
均值–梯度共生矩阵
5) common mean
共同均值
1.
Characteristics of general admissible estimates of multivariate random common mean;
多元随机共同均值泛容许估计的特征
2.
A sufficient condition of admissible linear estimate of a common mean in growth curve model in all estimators is given, and another proving method of admissible linear estimate in linear estimator is also given.
给出了生长曲线中共同均值参数的线性估计在一切估计类中可容许的一个充分条件 ,并给出了在线性估计类中可容许性的又一证法 。
3.
In this paper, we discuss the problem of estimating a common mean parametric matrix relative to matrix loss in general multivariate linear model.
1)中共同均值参数的估计问题。
6) seed matrix with same value
同值子矩阵
补充资料:单值矩阵
单值矩阵
monodromy matrix
单值鹭t黑嘿暮黔黑瀑巍常薇分方程又”A(t)x,t6R,x‘R”在零点处正规化的基本矩阵(和」、da此幻ta]袱亩认)X(亡)当:二。时的值;其中A(0是。周期矩阵,它在R的每一个紧区间上是可和的.刃一B kn“””~柳
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条