1) rad-projective modules
rad-投射模
1.
ⅡWe introduce the notion of soc-projective modules and rad-projectivemodules and study the equivalent characterizations and properties of soc-projective modules and rad-projective modules.
二引入了soc-投射模和rad-投射模的概念,得到了soc-投射模和rad-投射模的一系列等价刻画及其基本性质。
2) rad-injective module
rad-内射模
1.
The injective modules and the flat modules play an important role in many parts of ring and categories of modules,so we introduce the notion of generalized direct-injective modules,rad-injective modules,and rad-flat modules and study theirs properties.
本文是对环与模范畴中重要的模类-内射模与平坦模的延拓,引入了广义直内射模、rad-内射模与rad-平坦模的概念,研究了它们的一系列性质,以及探讨了rad-内射模与rad-平坦模的一些联系,最后还用rad-平坦模刻画了一些常见的环。
3) strong rad-injective module
强rad-内射模
4) X-Rad diffraction
X-Rad衍射
5) RAD model
RAD模型
1.
Based on the website management system used in Lin Cang Bureau of Science and Technology, aRAD model is designed in line with the MVC mode to solve the main problem of web-page contents in thewebsite management system.
基于临沧科技局站点内容管理系统,根据MVC模式的概念,笔者提出RAD模型,用以解决站点内容管理系统的核心问题:网页的内容定制与管理。
6) VP-RAD model
VP-RAD模型
1.
In this paper,we developed a new model for China s daily solar radiation calculation based on VP-RAD model.
针对上述问题,利用我国不同区域67个站点的数据,在VP-RAD模型的基础上,建立了一个适用于中国地区的逐日太阳辐射算法CNR,该算法仅需要输入站点基本信息、最高最低温度和降水量。
补充资料:投射模
投射模
projective module
投射模[脚扣愈e med.此;uPo~朋。面MO八”‘] 模p满足下列等价条件中的任一个:l)对任一模的满态射(ePnnorphism)献B~c及任一同态户尸~C,存在一同态下:尸~B,使得口=“汽2)模尸是自由模(n代m祖』e)的直和;3)函子(丘川c-tor) Hom(p,一)是正合的(见正合函子(exact丘me-tor));4)任一模的满态射是分裂的.Kaphns卿定理(Kaplansky theo~)([21)断言:任一投射模是具有可数多生成元的投射模的直和,由此导致可数情形下投射模结构的研究.具有限多生成元的投射模是代数K论(司罗braicK一theory)的研究内容.投射模最简单的例子是自由模.从在环上分解为直和来看投射模与自由模总是有差别的.已经证明的自由模类和投射模类重合的情形有局部环(见{2〕),域上几个变元的多项式环(见【3],【4]).【补注】有如下定理,域上几个变元的多项式环F【X,,,二,戈}上的每个有限生成投射模一定是自由模,这是著名的Q诬llen一qc月叫定理(Q说挽n一S仍lint】1。〕renl).这个问题是J.P.Serre在1955年提出来的“A2」),这也就是所谓的S眼猜想(女n℃conjec-ture).完全和详尽的讨论见【A3]. 在fAS]中,Qujllen一Cycjl”H定理被叙述为:设M是有限生成投射R〔Xl模,f〔 RIXI是首项系数为1的多项式,使得Mf是自由RIX〕f模,则M是一自由R tX〕模. Quill即证明Q山l】en一Cyc删定理时用了H心n戈‘k定理(HonDck th“〕rem工设R是一交换环,p是R[t〕上有限生成投射模.若R(t)⑧:川尸是自由R(t)模,则p是自由R〔t]模.另一个证明要素是Qu几kn插人定理(Q正11enP盖山无Ing thi”n沈n).设R是个环.M是(从R)扩充的R〔x,,…,XnJ模,如果存在一个R模M。,使得M全R「X,,…,Xnl因:M。,则插人定理断言,若R是交换环且M是有限表现R〔X,,一,戈]模,则M是从R扩充的,当且仅当对R的每个极大理想m,局部化M。,是由R:。扩充的.用这些术语可以得到广义Qul挽n一仁界J硼定理(罗nerd】i刘Q回len一Suslint执沟~):若k是交换正则环,其Knlll维数为2,则每个k[X,,…,戈〕上有限生成投射模是由k扩充的. Mul劝y一Hon℃(k定理(MUx’thy一Hont(kti】eoreln)提出,如果R是交换正则局部环,且K泊团维数为2,则R「t]上的有限生成模是自由模. 在讨论k[X,,…,戈l上的消去定理时,q。瑚首一多项式定理(Suslin mohic polyllomialthoorem)起了主要作用.(消去定理(以力优加石。nU篮幻~)是这样一种类型的定理:如果M④Q二N①Q,则M泛N.例如,B溉s消去定理提出,如果R是K川U维数d<犯的交换Nother环,Q,Q‘是有限生成投射模,它们是稳定同构的(stably isolnorp阮),即对某个,有Q④R‘=Q‘①彩·且Q的秩>d,则Q之Q’.)首l多项式定理提出,如果R是交换Nocther环,KnzU维数d<的,a是A二R【X、,…,X。】中高度>d的理想,则在A中存在新变量Y、,…,Y。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条