说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 极小残量法
1)  Minimal Residual Method
极小残量法
1.
The Generalized Minimal Residual Method (GMRES) isregarded as one of effective methods to solve large scale asymmetric systems oflinear equations.
这里主要介绍在Krylov子空间基础上发展起来的各种迭代法,包括正交化方法,广义极小残量法(GMRES),预处理的(GMRES)。
2)  generalized minimal residual (GMRES) method
广义极小残量法(GMRES)
3)  MINRES algorithm
最小残量法
1.
Based on the finite element method,we use the MINRES algorithm to obtain numerical solutions of the equation.
利用有限元方法并结合最小残量法,给出求解该问题的一个新方法,该方法修正了单纯采用有限元方法求解时在边界附近呈现出的非正常扰动现象,避免了因为ε过小所引起的解的变异,从而得到更加精确的数值结果。
4)  generalized minimal residual algorithm(GMRES)
广义极小残值法
1.
The main theory of generalized minimal residual algorithm(GMRES) and fast multipole method(FMM) are applied into the numerical solution of equations about virtual boundary element method(VBEM) to form the idea about the fast multipole expansion of multi-domain VBEM,which is applied to solve the composite structures of different materials.
将快速多极算法和广义极小残值法(GMRES)的基本思想运用于虚边界元法的方程求解中,并构造了多域组合问题虚边界元法的快速多极展开的实施思路,且将此方法用于不同材料组合结构问题的求解。
2.
The method-fast multipole virtual boundary element method(VBEM) is formed by introducing the generalized minimal residual algorithm(GMRES) and fast multipole method(FMM) to the VBEM.
针对快速多极虚边界元法是将快速多极展开算法和广义极小残值法(GMRES)引入虚边界元法中的形成特点,采用了"源点"多极展开和"场点"局部展开的组合处理方案,形成快速多极虚边界方法,从而使得原问题方程组求解的计算耗时量和储存量均降至与所求问题的计算自由度数成线性比例。
5)  generalized minimal residual methods(GMRES)
广义极小残差法
6)  GMRES implicit algorithm
广义极小残差隐式算法
补充资料:加权残数法
      一种可以直接从微(积)分方程式求得近似解的数学方法,在计算力学中应用较多。其要点是:先假设一个称为试函数的近似函数,把它代入要求解的微分方程和边界条件或初值条件;这样的函数一般不能完全满足这些条件,因而出现误差,即出现残数或残值;选择一定的权函数与残数相乘,列出在解的域内消灭残数的方程式,就可以把求解微分方程的问题转化为数值计算问题,从而得出近似解。
  
  如某一应用科学问题的控制微分方程式和边界条件分别为:
  
  
  
   Fu-f=0
  (V域),
  
  
  (1)
  
  
  
   Gu-g=0
  (S域),
  
  
  (2)式中u为待求函数;F和G为算符;f和g为不含u的项。设试函数为:
  
  
  
  
   
  
  
  
  (3)式中Ci为待定参数或函数。式(3)一般不能满足式(1)和式(2),从而出现内部残数Ri和边界函数Rb,即
  
  
  
    
   (4)
  
  
  
    
   (5)为消灭残数,分别以内部权函数Wi和边界权函数Wb乘式(4)和(5),列出消除残数的方程:
  
  
  
    
  
  (6)
  
  
  
    
  
  (7)它们将转变为代数方程式,从这些方程式求出Ci,就获得满足式(1)和式(2)的近似解(3)。
  
  若解(3)中所选择的试函数项Ni事先已能满足式(2),则只需用式(6)消除残数,这种方法称为内部法。若Ni已满足式(1),则只需用式(7)消灭残数,这种方法称为边界法。若Ni既不满足式(1),又不满足式(2),则须用式(6)和式(7),这种方法称为混合法。
  
  作为一种数值计算方法,加权残数法具有下述优点:①原理的统一性:寻求控制微分方程式的近似解,不分问题的类型和性质;②应用的广泛性:数学、固体力学、流体力学、热传导、核物理和化工等多学科的问题都能应用;既可解边值问题、特征值问题和初值问题,也可解非线性问题;③不依赖于变分原理:在泛函不存在时也能解题;④方法一般比较简单、快速、准确,工作量少,程序简单。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条