1) mixed geometric distribution
混合几何分布
2) the compound geometric distribution
复合几何分布
1.
We study the relations between F and G,that is,we obtains the closure and asymptotic behavior for random sums of many heavy-tailed distribution classes on(-∞,+∞),and apply them to the compound Poisson distribution and the compound geometric distribution.
研究了在若干重尾分布族(如:正则变换,相容变换等)中F与G之间的关系,即给出支撑在(-∞,+∞)上的若干重尾分布族随机和的封闭性和渐进性,并将其应用到复合泊松分布和复合几何分布。
3) geometrical distribution
几何分布
1.
The effect of bi-particle s geometrical distribution is then investigated.
在材料细观非均匀性的基础上研究了不同几何分布的双颗粒脆性基复合材料的宏观力学性能以及对复合材料破坏机理的影响。
2.
On the assumption that a single server provides service to the customers in the system,and the batch arrival of the customers submits to the geometrical distribution,the number of the customers in a batch arrival is random variables and has the generalized distribute function,and the service time also depends on the geometrical distribution,using the method of embedded the Markov chain,the.
考虑单个服务台的情形,假设顾客的批次到达服从几何分布、每批到达的顾客数服从一般的离散分布、顾客的服务时间也服从几何分布,使用嵌入Markov链的方法,分析得到了该随机排队系统的队长、等待队长、等待时间以及忙期等关键指标的母函数。
3.
And two strong deviation theorems for the relativeentropy density of geometrical distribution are derived.
本文在文[2]的基础上探讨几何分布相对熵密度偏差的极限性质,获得二个几何分布的相对熵密度的强偏差定理。
4) geometry distribution
几何分布
1.
The paper derives the solution of the last probability of ruin in geometry distribution model by probability theory,and obtains its approachable estimate.
运用概率论知识对索赔总额服从几何分布模型导出了最终破产概率的表达式,并得到其渐进估计。
2.
The limit properties of deviation of relative entropy with respect to the independent geometry distribution are disc ussed and three strong deviation theorems of relative entropy density which give the estimate of strong large number of the deviation when n→∞ are obtained.
当任意信息源是可列实数集时 ,探讨相对于独立型几何分布的熵密度偏差的极限性质 ,获得三个相对熵密度的强偏差定理 。
3.
For any information source on a countable set, the limit properties of relative likelihood ratio and log-likelihood ratio of entropy density with respect to the independent geometry distribution, an important problem in the information theory is discussed.
对任意的可列集上的信息源 ,探讨信息论的 -个重要问题 ,即探讨了相对于独立型几何分布的熵密度似然比与对数似然比的极限性质 。
5) geometric distribution
几何分布
1.
The statistical analysis for geometric distribution with full sample size based on tampered failure rate model under step-stress accelerated life testing;
全样本场合几何分布产品步进应力加速寿命试验TFR模型下的统计分析
2.
Interval estimations of parameters for geometric distribution and research of statistical approach;
几何分布参数的区间估计和统计贴近性研究
3.
Parameter estimation of geometric distribution under Q-symmetric entropy loss function;
Q对称熵损失下几何分布的参数估计
6) super geometry distribution
超几何分布
1.
This article tells us how to use probability generating function to find the expectation and variance of super geometry distribution.
本文介绍如何运用概率母函数来求超几何分布的期望和方
补充资料:超几何分布
超几何分布
hypergeometric distribution
超IL何分布【hyl甲唱翻.曲血业州饭面.:roue脚eoMe-Tpe,ee姗PaenP叨幼e。,el 用公式 卿(纷黔 (了)确定的概率分布,其中M,N,n是非负整数且M簇N,。、N(此处(宕)是二项系数,有时也用C言表示).超几何分布通常与无放回抽样相联系.在包含N个元素的总体中有M个元素有“标记”,N一M个元素无“标记”.公式(*)给出了从这N个元素的总体中随机抽取n个元素,其中恰有m个元素有“标记”的概率.概率(*)只对 1llax(0,M+。一N)簇m毛~(。,M)有定义.然而,定义〔*)可用于一切川)0.因为可以假定:若吞>。,则(宕)一0.于是、一。可解释为不可能得到m个有标记的元素的样本.扩张到整个样本空间时,几的和为1.若令M/N”P,则(‘)可以写为 了n\月竺月佗厂脚 ”=l”】J二月口J几No 、m,一一可一一其中 /a\ A:=又石)b!且p+q=1.如果p是常数而N~co,那么有二项逼近 ,。一(及);附、一’.超几何分布的期望不依赖于N且和对应的二项分布(binol俪al此t行bu石。n)的期望nP相同.超几何分布的方差 N一” J一=nPq-荔一~一;一 二工N一1比二项分布的方差扩二npq小.如果N~的,超几何分布的任意阶矩收敛于对应的二项分布的矩.超几何分布的生成函数为 A几_,,声A乳A少x爪 一l,_、_J二N一M、’考二M若几”八 D《X刃二—2—— 入万用=D戏N一“一“+用爪!表达式右边的级数表示超几何函数(h拜劝心印nr州C丘川cti(,n)F(“,口;下;x),此处“二一。,刀=一M而下二N一M一n十l(因而此分布命名为超几何分布).对于范围广泛的值,概率(*)及其相应的分布函数已经制成了表.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条