1)  Liliaceae
甾体生物碱甙
2)  steroids
甾体
1.
Study on Substrate Dissolution in the 11β-Hydroxylation of Steroids by Curvularia Lunata;
甾体11-β羟化过程中底物溶解性的研究
2.
Study on Steroids 11β-Hydroxylation in Cell-dilution Technology;
细胞稀释工艺转化甾体11β-羟基的研究
3.
Microbial transformation of 4-ene-3-one steroids by Mucor racemosus;
总状毛霉对4-烯-3-酮甾体的生物转化研究
3)  Steroid
甾体
1.
Study on enzymatic C_(11) α-hydroxylation of steroid by Rhizopus stolonifer NG0305;
葡枝根霉NG0305酶催化甾体C_(11)α羟基化的研究
2.
Application of microbial steroid transformation in pharmaceutical industry;
甾体微生物转化在制药工业中的应用
3.
Screening cell proliferation activity of novel isoflavone and steroid derivatives;
新型异黄酮及甾体类化合物体外抗癌细胞增殖活性的初步筛选
4)  sterol
甾体
5)  steroidal saponin
甾体皂甙
1.
Study on extraction of steroidal saponins from Chinese medicine rhizoma paridis based on orthogonal test and chemical subspace method;
基于正交试验与化学子空间法研究中药重楼中甾体皂甙的提取工艺
2.
Study on Rhizome s Steroidal Saponin and Sapogenin of 5 Tupistra Species;
五种开口箭属植物根状茎中甾体皂甙及甾体皂甙元的初步研究
6)  Steroidal saponins
甾体皂甙
1.
Furostanol steroidal saponins, also called bidesmosidic steroidal saponins, typically bear two sugar chains at the 3 - and 26 - positions of the steroidal skeleton, respectively.
综述了呋喃甾烷型皂甙(双糖链甾体皂甙)的结构特点、化学性质、生理活性和生源合成。
2.
The isolation ,structure elucidation and structure character of steroidal saponins from these plants are emphatically discussed.
概述了近几十年来菝葜属植物化学成分研究的进展,着重介绍了在本属植物中所发现的甾体皂甙类化合物的分离技术、结构鉴定和结构特
参考词条
补充资料:甾体的微生物转化
      微生物选择性地修饰或改造甾体化合物分子结构的作用。它是通过微生物产生的酶催化进行的。
  
  1937年L.马莫利和A.韦瑟洛纳曾发现 1株酵母能还原甾体17碳位上的酮基为17β-羟基。1943年,G.E.屠飞特发现诺卡氏菌能彻底降解胆甾醇。但微生物转化甾体化合物的能力,直到在可的松合成中被采用后才引起人们的重视。可的松是一种皮质激素药物,具较强的抗炎活性。1952年,美国普强药厂的生物化学家D.H.彼得森和微生物学家H.C.默里发现少根根霉能使孕酮的11碳位羟基化,生成11α-羟基孕酮,而后又用黑根霉转化,获高达95%的得率,大大降低了可的松的成本。不久,科学家们又相继发现细菌、真菌、放线菌中的某些种,可以使一定结构的甾体化合物在一定的部位上发生分子结构的改变。这种酶促反应具有严格的底物特异性,一般能使底物分子上1个或2个基团起反应,而并不需要对其他基团进行保护,有的还能把手征性的中心引入光学上无活性的分子中。至今已发现微生物转化甾体化合物的反应类型,几乎包括任何已知的微生物酶促反应和已经发现的化学反应,如氧化、还原、水解、缩合、异构化、新的碳碳键的形成以及杂基团的导入等。通常,一个酶促反应可以代替几个化学反应步骤,这就使甾体药物的合成工艺变得更有效并更经济。
  
  一种微生物可在同一甾体的不同部位产生不同类型的反应,也可在不同结构的甾体化合物上发生同一类型的反应。各种不同的微生物又能在同一种甾体上产生相同的转化反应,也可产生不同的反应。
  
  在甾体药物的工业生产中,目前国内外采用微生物转化的反应有C11α-羟基化、11β-羟基化及16α -羟基化A环C1-或C1-和C4-位的脱氢,呌-位羟基的脱氢,呌-或C21-位酯的水解以及C17-位侧链的降解、不对称还原C17-位酮基等,它们都已分别在各种皮质激素、性激素、口服避孕药、蛋白同化激素、抗癌剂、利尿剂等药物的合成中成为关键步骤。
  
  由于甾体化合物的微生物转化作用是利用微生物的酶对甾体底物进行特定的化学反应,因而转化的产物不是微生物代谢的产物。在整个发酵过程中,微生物的生长和甾体的转化反应可以完全分开。首先进行菌的培养,积累转化所需要的酶,再利用这些酶改造甾体分子。转化反应可直接用菌体细胞或孢子,也可用有活性的酶或者采用固定化细胞或固定化酶来完成。
  
  为提高转化反应的效果,可通过菌种筛选、诱变或培养条件的考察提高酶活性;也可通过改造底物结构、使用酶的抑制剂等方法避免不需要的负反应,提高转化产物的产量;另外,用固体粉末状底物直接投加或使转化反应在水不混溶性溶剂中进行,可大幅度提高浓度及转化收率。
  
  中国科技工作者从1958年就已开展这一研究。30年来已为甾体药物的生产提供了各类生产菌种。并在转化条件、转化机制等方面做了许多工作,推动了甾体药物工业的发展。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。