说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 基于迭代次数变步长的LMS算法
1)  changing step LMS arithmetic base on iterative time
基于迭代次数变步长的LMS算法
2)  variable step-size LMS algorithm
变步长LMS算法
1.
The transform domain LMS algorithm is integrated with variable step-size LMS algorithm and BLMS algorithm,from which a new transform domain variable step-size BLMS adaptive algorithm is presented.
将变换域LMS算法和变步长LMS算法及批处理LMS算法相结合,提出了一种新的变换域变步长批处理LMS自适应算法,该算法融合了前面3种算法的优点,可以有效地降低输入信号的自相关程度,克服了固定步长因子所导致算法在快的收敛速度和较低的稳态误差之间存在的矛盾,并且实时性较好。
2.
The transform domain LMS algorithm can reduce the cross-correlation of input signals effectively through orthogonal transforms,so the convergence rate will be improved;the variable step-size LMS algorithm can overcome the conflict between high convergence rate and low steady-state error which is caused by fixed step-size,so higher convergence rate and better convergence result can be acquired.
变换域LMS算法能通过正交变换有效降低输入信号自相关矩阵特征值的分散程度,可提高算法的收敛速度;变步长LMS算法可以克服固定步长因子所导致的算法在较快收敛速度和较小稳态误差之间存在的矛盾,从而获得较快的收敛速度和较好的收敛结果。
3)  variable step size LMS algorithm
变步长LMS算法
4)  variable step size quasi_LMS
变步长类LMS算法
5)  LMS(Least Mean Square) iterative algorithm
迭代LMS算法
6)  LMS update algorithm
LMS迭代算法
补充资料:迭代算法


迭代算法
iteration algorithm

  迭代算法〔i恤腼吨函d朋;HTep叫“ouH‘~p“仪] 由点到集合的一个映射序列A*所确定的递推算法,其中A*:V一V,V是一个拓扑空间,对于某初始点““任v,可依下式计算点列。“任V, 。“+,一注*。“,儿=o,l,·…(l)称算子(1)为迭代(i把mt沁n),而序列{。“}为迭代序列(itemti祀s叫uence). 迭代法(jtemtionn犯thod)(或迭代逼近法(me-thod of iterati记appro汕na石on”应用于求下面算子方程的解 通。”f,(2)即某泛函的极小值,求方程Au=又“的本征值和本征向量等,同时也用来证明这些问题解的存在性.如果对于一个初始近似。。,当k一的时:‘~。,则称迭代方法(l)收敛到问题的解u. 求解(2)的线性度量空间V上的算子A*一般由下式构造 注*况几=。七一H*(A。友一f),(3)其中{H*二V~V}是由某迭代型方法所确定的算子序列.压缩映射原理(c ontraCting .n分pp吨pnn-ciPle)及真摧户,’或著向题的泛函变分极小化方法都是建立在构造形如(l),(3)的迭代法基础之上.所使用的构造A七的各种方法有Newton法(Newton脸thod)或下降法(d留cent,n祀th(记of)的诸多变形.人们尝试选取H*使得在一定条件下。止~u的快速收敛得到保证,这些条件要求计算机存储空间确定后算子A*u六的数值实现充分简单,有尽可能低的复杂性而且数值稳定.求解线性问题的迭代法得到了很好的发展和深人的研究.该迭代法这里分为线性与非线性两大类.Ga.法(Ga璐nr目兀心),Sd翻法(Sei-delrr℃th司),逐次超松弛法(见松弛法(侧公爪沁n1优thod))和带有tle氏皿eB参数的迭代法属于线性方法;变分法(如最速下降法,共扼梯度法和极小偏差法(mi曲nal discrepancyn坦thod))等.见最速下降法(s吹p巴t把ceni,皿thi对of);共扼梯度法(eonju,te脚dients,此山记of)属于非线性方法.最有效的迭代法之一是使用tIe玩IIDeB参数(Che勿shevP~t-ers),这里A是一个带有〔。,M』上谱的自相伴算子,M>m>0.这个方法提供了关于预先指定的第n步收敛性最优(对谱边界上的给定信息)估计.方法可描述为 “‘+’=“一“*十1(通。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条