2) telemetering automatic hydrologic station
自动遥测水文站
3) hydrological data acquisition system
水文遥测系统
1.
Reliability Analysis of Hydrological Data Acquisition System (HDAS) in Taihu Basin;
太湖流域水文遥测系统可靠性分析
2.
Because different hydrological data acquisition systems apply a wide variety of formats for communication data stream and network data stream,so the systems exist some shortages in weak generalization and scalability,low real-time performance,high cost of information compatibility & integration.
不同版本的水文遥测系统中用到的通讯及网络数据流形式复杂多样,系统通用性及可扩展性不强,实时性低,信息兼容集成成本高。
4) hydrological telemetering system
水文遥测系统
1.
Because hydrological telemetering systems based on networks have complex heterogeneity.
基于网络的水文遥测系统存在复杂的异构性,导致其软件系统的复杂化,致使多个系统间难以集成,为此,以面向服务的软件体系结构为分析和描述水文遥测系统的基本依据,形成基于Web Service的水文遥测系统软件模型,提出了将系统分割为业务逻辑相对独立的各类服务,并按控制及数据的分布部署服务的原则。
2.
Software reuse can lower the price of software development in the hydrological telemetering system and it can promote the standardization and reliability of software development.
软件复用是减少水文遥测系统软件开发投入,提高软件的标准化与可靠性的有效途径。
3.
To improve the performance of data management and saving in the hydrological telemetering system,a file system for NAND Flash memory is constructed and a hardware driver for NAND flash memory is designed in this paper according to the NAND flash memory\'s analysis and the demands for the interface of file system.
为有效地管理和保存水文遥测系统采集和运行数据,提高系统的性能,根据NAND Flash存储器的特性和文件管理系统接口的要求,构建了一个适合NAND Flash存储器的文件系统,并且设计了NAND Flash存储器的硬件驱动程序。
5) automatic telemetering system
自动遥测系统
1.
An automatic telemetering system of sediment concentration through turbines was successfully set up for the Sanmenxia Hydropower Station on the Yellow River.
研究黄河三门峡水电站过机含沙量自动遥测系统。
6) antomatic hydrological telemetry system
水文(情)自动测报系统
补充资料:水文自动测报系统
由收集、传递和处理水文实时数据的各种传感器、通讯设备和计算机等装置组合而成。分成遥测站、信息传输通道和中心控制站(简称中心站)三部分。主要用于防汛和水利调度。在小流域范围内只需几分钟时间即能完成数据收集和处理,及时提供重点河段、水库的雨情水情。系统的工作原理见图。
遥测站 自动收集雨量、水位和其他水文参数的实时数据。在中心站的控制下按一定方式把这些数据编排成脉冲信号,通过信道传递到中心站。遥测站的仪器设备有雨量计、水位计、编码器、数传机、电台和电源设备等。一般在有人管理无人操作情况下进行。雨量计常用翻斗式,每毫米雨量翻转一次,发出信号驱动记录和编码器。水位计多数采用浮子式,用机械机构直接传动记录笔和编码器。编码器是把雨量和水位(即浮子位移模拟量)转换成数字电量的器件。可以编排出各种码制的脉冲信号,雨量编码只有增量,而水位变化是连续、可逆的,必须采用双电刷判别电路、步进机构或循环码盘等特殊方法。当接到遥测站或中心站的发报指令后,全套设备启动,从编码器中取出数据,并按一定逻辑程序将站号、雨量和水位依次发送出去。
发送制式有两类:①自报式发送,系统中的各观测站自动向中心站发报,其控制方法有定时控制和增量控制两种。定时即按预先规定的时间和测次,到时发报。增量是指雨量或水位每变化一定数量时,如雨量增加 1毫米,水位增减 1毫米,立即发报实时的累计雨量和水位。每次发一至数遍,每个参数约0.3~0.5秒即可。这两种控制方式也可以结合使用,以满足时段雨量的计算和了解设备是否正常。②应答式发送,测站等待接收中心站发来的指令后给予回答,发报实时数据。它要求观测站接收设备长期或定时段通电,处于待命状态。
信息传输通道 简称信道,是连接遥测站与中心站之间的电波传输线,分为有线和无线两类:①有线通道用专线或共用电话线路。其优点是抗干扰性强,使用比较方便可靠。缺点是设备成本随距离而增加,如采用架空线,在大风暴雨时容易损坏。②无线电通道常用超短波频段,功率 1~10瓦,当通信距离超过50公里,或有高山阻挡时,常设置中继站,把接收到的信号增大功率后,再用另一频率发射出去。测站采用定向天线,中继站可用高增益的全向天线,以满足各个方向通信的需要。电源一般采用碱性蓄电池供电。无线电通道适用于远距离传输,设备费用较低,但易受干扰,误码机率较有线通道高。卫星无线电通道,用卫星作为中继站,一般采用微波波段,优点是观测站位置不受地形限制,通信距离更远,覆盖面积更大。还有短波、流星余迹散射等方式,都可作远距离通信用。
信息传输方式采用脉冲调制数字通信,简称 PCM。"0"和"1"是数字通信的基本信息,称为比特,每秒传输基本信息量称波特。由于水文遥测系统的数据量较少,通常采用25、50、100波特,也有用300、1000波特的。每次发送与接收必须使信息同步,才能进行解码。应答式的选呼方法常用两个音频调制信号作为各站的地址码。
中心控制站 它的功能是集中遥测系统内各遥测站的水文数据,进行计算整理,及时作出洪水预报,并可控制闸门启闭,进行水利调度。根据流域面积及部门的需要可配置多级控制中心。中心站主要设备有通信电台和电子计算机等。根据功能要求和数据量来选择机型,一般采用中小微机,并配置显示器、宽行打印机和磁盘驱动器等外围设备。控制方式根据系统的发送制式而定,自报式具有测站功耗低微,设备简单可靠,费用低廉,数据有效率高等优点,更适合于高山偏僻地区使用。美国和加拿大等国主要使用这种制式。应答式的功能较多、控制灵活,接收中心可以定时自动巡测,也可随时指令巡测或选测,而且可以通话,使用方便。日本和意大利等国主要采用这种制式。中国这两种制式都用,或在系统中兼容。
自动测报系统开始用于汛期的水文情况收集,后来也用于水文站网资料收集,兼顾洪水预报、调度,又用作资料整编。使用的计算机由单机发展到计算机网络和建立数据库,使任何一个地方的终端都可以调用数据,共用情报,进行预报,效益显著(见实时联机水文预报)。
遥测站 自动收集雨量、水位和其他水文参数的实时数据。在中心站的控制下按一定方式把这些数据编排成脉冲信号,通过信道传递到中心站。遥测站的仪器设备有雨量计、水位计、编码器、数传机、电台和电源设备等。一般在有人管理无人操作情况下进行。雨量计常用翻斗式,每毫米雨量翻转一次,发出信号驱动记录和编码器。水位计多数采用浮子式,用机械机构直接传动记录笔和编码器。编码器是把雨量和水位(即浮子位移模拟量)转换成数字电量的器件。可以编排出各种码制的脉冲信号,雨量编码只有增量,而水位变化是连续、可逆的,必须采用双电刷判别电路、步进机构或循环码盘等特殊方法。当接到遥测站或中心站的发报指令后,全套设备启动,从编码器中取出数据,并按一定逻辑程序将站号、雨量和水位依次发送出去。
发送制式有两类:①自报式发送,系统中的各观测站自动向中心站发报,其控制方法有定时控制和增量控制两种。定时即按预先规定的时间和测次,到时发报。增量是指雨量或水位每变化一定数量时,如雨量增加 1毫米,水位增减 1毫米,立即发报实时的累计雨量和水位。每次发一至数遍,每个参数约0.3~0.5秒即可。这两种控制方式也可以结合使用,以满足时段雨量的计算和了解设备是否正常。②应答式发送,测站等待接收中心站发来的指令后给予回答,发报实时数据。它要求观测站接收设备长期或定时段通电,处于待命状态。
信息传输通道 简称信道,是连接遥测站与中心站之间的电波传输线,分为有线和无线两类:①有线通道用专线或共用电话线路。其优点是抗干扰性强,使用比较方便可靠。缺点是设备成本随距离而增加,如采用架空线,在大风暴雨时容易损坏。②无线电通道常用超短波频段,功率 1~10瓦,当通信距离超过50公里,或有高山阻挡时,常设置中继站,把接收到的信号增大功率后,再用另一频率发射出去。测站采用定向天线,中继站可用高增益的全向天线,以满足各个方向通信的需要。电源一般采用碱性蓄电池供电。无线电通道适用于远距离传输,设备费用较低,但易受干扰,误码机率较有线通道高。卫星无线电通道,用卫星作为中继站,一般采用微波波段,优点是观测站位置不受地形限制,通信距离更远,覆盖面积更大。还有短波、流星余迹散射等方式,都可作远距离通信用。
信息传输方式采用脉冲调制数字通信,简称 PCM。"0"和"1"是数字通信的基本信息,称为比特,每秒传输基本信息量称波特。由于水文遥测系统的数据量较少,通常采用25、50、100波特,也有用300、1000波特的。每次发送与接收必须使信息同步,才能进行解码。应答式的选呼方法常用两个音频调制信号作为各站的地址码。
中心控制站 它的功能是集中遥测系统内各遥测站的水文数据,进行计算整理,及时作出洪水预报,并可控制闸门启闭,进行水利调度。根据流域面积及部门的需要可配置多级控制中心。中心站主要设备有通信电台和电子计算机等。根据功能要求和数据量来选择机型,一般采用中小微机,并配置显示器、宽行打印机和磁盘驱动器等外围设备。控制方式根据系统的发送制式而定,自报式具有测站功耗低微,设备简单可靠,费用低廉,数据有效率高等优点,更适合于高山偏僻地区使用。美国和加拿大等国主要使用这种制式。应答式的功能较多、控制灵活,接收中心可以定时自动巡测,也可随时指令巡测或选测,而且可以通话,使用方便。日本和意大利等国主要采用这种制式。中国这两种制式都用,或在系统中兼容。
自动测报系统开始用于汛期的水文情况收集,后来也用于水文站网资料收集,兼顾洪水预报、调度,又用作资料整编。使用的计算机由单机发展到计算机网络和建立数据库,使任何一个地方的终端都可以调用数据,共用情报,进行预报,效益显著(见实时联机水文预报)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条