1) penetration distance δ_p
冲入深度δ_p
2) Impact force-penetration depth curve
冲击力-侵入深度曲线
3) Impact Depth
冲击深度
4) scour depth
冲刷深度
1.
The examinational study on the local scour depth of roadbed along river;
沿河路基局部冲刷深度的试验与分析
2.
Research on local scour depth calculation of roadbed along river;
沿河路基局部冲刷深度计算研究
3.
Investigation on characteristics and scour depth of flow in river bend;
河流弯道水流特点与冲刷深度探讨
5) scouring depth
冲刷深度
1.
Estimation method of scouring depth of lower reach of hydro-junction;
枢纽下游河床冲刷深度估算方法
2.
Discussion the scouring depth recommended by "Levee Engineering Design Standard";
对《堤防工程设计规范》推荐冲刷深度公式的探析
3.
Based on this research,the model nearby superposed flow spur and the velocity distribution of spur head flow were built,At last,a theoretical formula of scouring depth around pile permeable spur dike was derived from the models.
针对其区域水流特性及局部冲刷,通过理论分析,并结合试验验证,分析了其局部水头损失机理,得出了正挑桩式丁坝壅水高度的计算公式,建立了坝头水流的叠加模式和坝轴断面的流速分布式,导出了其局部最大冲刷深度的理论计算公式。
6) depth of scour
冲刷深度
1.
Taking Bayin River Crossing as an example,which is only a sechis of Hydraulic Protection Project for Sebei-Xining-Lanzhou Gas Transportation Pipeline,we have calculated the depth of scour in this section by using the scouring empirical formulae that have been widely used in the pipeline engineering.
以"涩宁兰输气管道巴音河穿越段水工保护工程"为实例,采用管道河流穿越工程中广泛应用的冲刷经验公式,对该穿越段的冲刷深度进行计算,通过对比分析各计算结果的合理性与可靠性,提出了符合实际情况的水工保护工程基础埋置深度,为油气输送管道穿越段水工保护工程设计与工程基础埋深的确定提供了技术参考和较可靠的科学依据。
补充资料:电流透入深度
电流透入深度
current penetration depth
d旧n}一U touru Shendu电流透入深度(eurrent penetration depth) 表征感应电流趋肤效应程度的物理量。处于交变电磁场中的导电体内部会产生感应电流。如磁场方向与导电体表面平行,则该感应电流有趋肤效应,即导电体表面的电流密度最大,离表面愈远,电流密度愈,J、。 在理论上,电流透人深度定义为:正弦波形平面电磁波垂直地人射到无限厚均质平面导电体中时,平面导电体内电流密度‘有效值,等于其表面电流密度告、36.8%(e为自然对数的底)处距表面的距离。 根据麦克斯韦方程组可推导出电流透入深度古为。一。。3。得,。m式中P为导体的电阻率,n·cm;产为导体的相对磁导率.f为交变电磁场的频率,H:。 推导中假定:平面导体的厚度和长、宽为无限大;导体是均质的,即其电阻率和相对磁导率各处都相同。 还可推导得出:在电流透人深度范围内,导电体从电磁场吸收的功率为导电体吸收的总功率的86.5%几种常用材料的电流透人深度见表。几种常用材料的电流组入裸度(cm)┌─────────┬──────────────────────────┬──────┬───────────────────────┐│材料 │频率‘H·,} │材料 │频率(Hz) ││ ├───┬───┬───┬───┬───┬──────┤ ├───┬───┬───┬───┬───┬───┤│ │50 │500 │1000 │3000 │10000 │4。。。。。}│ │50 │500 │1000 │3000 │10000 │400000│├────┬────┼───┼───┼───┼───┼───┼──────┼─┬────┼───┼───┼───┼───┼───┼───┤│破钢 │ 室温 │0。32 │0。11 │0 .08 │0。04 │0 .02 │0 .00 │铜│室温 │0 .95 │0 .33 │0 .23 │0 .02 │0。07 │0 .01 ││ │1200℃时│6 .60 │2 .30 │1 .62 │0 .95 │0.52 │0 .08 │ │850℃时 │l。93 │0 .66 │0。47 │0。艺7│0 .15 │0。02 ││ │熔化时 │9 .10 │3 .18 │2 .25 │1 .30 │0。71 │0 .10 │ │ │ │ │ │ │ │ │├────┼────┼───┼───┼───┼───┼───┼──────┼─┼────┼───┼───┼───┼───┼───┼───┤│ICr18Nig│ 室温 │;:;: │1 .97 │1 .39 │0 .80 │0 .44 │0 .07 │铝│室温 │}:;; │0 .37 │0 26 │0 .14 │0 .08 │0 .01 ││不铃钥 │1200℃时│ │2 .60 │1 .84 │1 .06 │0 .58 │0 .09 │ │500℃时 │ │0。66 │0 .47 │0 .27 │0 .15 │0 .02 │└────┴────┴───┴───┴───┴───┴───┴──────┴─┴────┴───┴───┴───┴───┴───┴───┘在感应加热的理论和实践中,电流透人深度是一个重要的基本参数,可由此了解被加热物料在不同频率和温度下(磁性材料在超过某一温度—居里点以后失去磁性,其相对磁导率大为减小)其内部电流分布情况,从而了解电流加热层的厚度。上式虽是按无限厚导电体导出的,但在实践中.当材料厚度超过2古时,实际情况已与理论假定接近.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条