1) localsearch
局部邻域搜索
2) local search
邻域搜索
1.
An adaptive hybrid genetic algorithm was developed to solve VRPSDP,which used a special optimal splitting procedure to get the fitness values,and took a local search as the mutation operator.
该算法以最优划分方法计算适应值,邻域搜索法作为变异算子,设计了新颖的交叉算子和群体更新策略,定义了群体多样性结构和变异概率的变化规律。
2.
An improved algorithm,combined ant algorithm with local search,is put forward to reduce the inherent deficiency of traditional ant algorithm in solving JSP.
讨论了蚁群算法在车间作业调度问题中的应用,针对传统蚁群算法求解调度问题的不足,将邻域搜索与蚁群算法结合,通过实验验证了该混合算法的有效性和优化性。
3.
A new local search algorithm for solving the minimum make span problem of job shop scheduling is presented.
该文提出了一种新的求解工件车间调度(jobshopscheduling)问题的邻域搜索算法。
3) neighborhood search
邻域搜索
1.
Hybrid Constraint Satisfaction and Neighborhood Search Algorithm and its Application
约束满足与邻域搜索结合的混合算法及应用
2.
Then a fast neighborhood search algorithm was presented.
研究了无等待流水车间调度问题的快速邻域搜索技术,并将其分别用于加强粒子、个体极值或全体极值的邻域探索能力,得到了三种改进的离散粒子群优化算法。
3.
In accordance with the characteristic of NPhard,a mutation based on neighborhood search is proposed,and a hybrid genetic algorithm is also established,which used the idea of neighborhood search and combined the heuristic algorithm and genetic algorithm.
分析了资源受限项目调度问题,针对其具有NP hard的特点,提出了一种基于邻域搜索的混合遗传算法,将启发式算法与遗传算法相结合,用邻域搜索的思想进行变异操作。
4) Searching neighborhood
搜索邻域
5) local search
局域搜索
1.
This algorithm is based on the idea of local search and random disturbance,wich takes reducing the vehicle number as its main target,applies heuristic search method and uses random disturbance when entrapped in local minimum.
该算法基于局域搜索和随机扰动的思想,以减少车辆数目为主要目标,采用了启发式的搜索方法并加入了随机扰动以跳出局部最小点。
6) local search
局部搜索
1.
New local search algorithm for k-median problem;
求解k中间点问题的新局部搜索算法
2.
Improved ant colony algorithm based on dynamic control of solution construction and mergence of local search;
基于创建解动态控制和局部搜索合并的蚁群算法
3.
Classification Rules Discovery Based on Local Search and the Application in Intrusion Detection;
基于局部搜索的分类规则发现及其在入侵检测的应用
补充资料:局部域
局部域
local fidd
局部域[lo阅fidd;月OKa月‘“oe no几e] 一个域,其相对于一个离散赋值是完全的,且具有有限的剩余类域.局部域K的结构是熟知的:l)若K的特征是0,则K是p~adic数域Q,的有限扩张(见p进数(P~adicn曲lber));2)若K的特征大于O,则K同构于有限域k上的形式幂级数域k((T)).这种域之所以称为局部的是有别于整体域(数域Q的有限扩张或k(T))而且是研究后者的一种工具.有关一个局部域的Galois扩张的上同调性质可参见【11,亦见阿代尔(Ade】e);伊代尔(ld日e)及类域论(d踢月e】dU佣ry). 为构造多维概形的类域论,我们应用局部域概念的一种推广.亦即.一个”维局部域(n一面拙朋lonall‘刃月兔ld),是一列完全离散赋值环O。,…,O。并带有同构、(o‘)二K(o‘+1),其中k是剩余域,K是一个环O的商域.进而要求k(O。)是有限的,则存在对于n维局部域的结构理论(见13]).【补注】局部域的概念有时被扩充到有任意剩余类域的离散赋值域.对于具有完满的剩余类域的局部域存在一个以某种基本群(丘川由n犯ntal group)为术语的类域论(〔AI],【A2」).有关n维局部域类域论的描述(用代数K论的语言)亦见【A3]一IAS].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条