1) Optimum Synthesis of Structure and Dimension
最优结构尺度综合
2) Dimensional optimization and synthesis
尺度优化综合
4) optimal scale
最优尺度
1.
A symbol rate estimation algorithm based on wavelet transform with optimal scale;
一种基于最优尺度小波变换的符号率估计算法
2.
The related experimental researches show that it is necessary to extract the region of interest in optimal scale images.
在分析两种最优尺度选择方法局限性的基础上,根据"类内同质性大,类间异质性大"的最佳分类原则,提出面向对象的RMAS方法。
5) structural optimal reliability
结构最优可靠度
1.
The problem of determination for the structural optimal reliability should be considered with union of the structural maintenance and strategy together.
结构最优可靠度如何确定是一个需要与维修策略统一考虑的问题。
补充资料:最优综合控制
最优综合控制
optimal synthesis control
最优综合控制汇叩timai syUthesis“旧。d;OnT枷~。cynPa助eHHe n03砚期0服oe] 最优控制的数学理论(。pt近司ContiOI,n劝t址沮祖ti-司山印卿。f)中一个问题的解,由导侈答掣的筝拿(syllU姆515 of an optinul contiol)(反馈综合(1改幻加比synthesis))组成,并作为过程现时状态(位置)的函数以控制策略形式出现(反馈原理)(见【11一【31).控制的值的确定不仅依赖于现时刻,而且还依赖于现时参数的允许值.这样,这种位置策略的引进就有可能根据系统运转过程中所得到的补充信息,随时对控制进行修正. 例如,对于系统 交“f(t,x,u),t。簇t镬r,,x〔R”,u‘Rp,(l)在约束条件 ueu住Rp或少(u)(o,妙:Rp~R‘(2)和给定的“末端”判据 I(x(·),u(·))二职(r,,x(::)),价:R”+’~R’之下,最简单的综合问题就是对于任意初始位置{:,x},寻找一个解矿,使得泛函I(x(·),u(·))在形式为。(t,x)的函数类中达到极小值.一种自然的想法是对于每一对{:,x}构造一个最优程序控制(叩血ulProgranl口刀ng eolltiDI) 。0[t}:,x卜x=x(:),:簇t簇t.,使得同一个泛函I(x(·),。(·))在同样的这些约束下达到极小.进而假定 uo(t,x)=uo【r lr,x」:如果函数犷(t,x)定义得恰当,并且方程 交=f(t,x,uo(r,x)),x(:)=x,T续t簇t、 (3)有唯一解,那么综合问题就可以解决,而且在程序控制和综合控制中所找到的I的最优值是相同的(一般而 言,保证方程(3)在特定意义下的解存在的条件是很 多的,并且确保该方程的所有轨线为最优的条件也是 很多的). 经综合的函数u0(t,x)作为一个最优综合控制, 正是这个最优控制问题中的泛函I对任意初始位置{:,二}达到极小的一个最优解.这与最优程序控制不同,后者一般说来依赖于过程的固定的出发点{t。,x0}.最优控制的解表示成最优综合控制的形式有许多应用,尤其是在信息受到限制或者动力学中出现扰动的情况下实现最优控制这样的实际过程中.在这样的情形下,综合控制比规划控制更可取. 寻找u0(t,义)作为现时状态的函数形式与动态规划(dynamic prog滋n切mng)有直接关系(见12」).返回函数(代tum彻Iction)(Bdlrr坦n函数(Bel匕留Ln func-tion),值函数(M目瞬丘川ction))V(:,x)作为被优化的一个量(例如,对于系统(1),泛函 t. J(x(·),二(.·))一丁,。(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条