3) GA-BP neural network
遗传BP神经网络
1.
AMD active control for irregular buildings using GA-BP neural network;
遗传BP神经网络主动AMD对偏心结构的减震控制
4) BP neural network model
BP神经网络模型
1.
The Study on the Forecasting Methods of Urbanization level——Taking BP Neural Network Model as an Example;
城市化水平预测方法研究——以BP神经网络模型的应用为例
2.
Through the establishment of water environment management information system of Supa River basin, an improved BP neural network model made for the comprehensive assessment on the water quality of the basin concerned is presented in accordance with the condition with better water quality and without any principal economic industries therein.
通过建立苏帕河流域水环境管理信息系统,针对苏帕河流域没有主要经济产业、水质较好的状况,侧重于介绍建立改进的BP神经网络模型对流域的水质进行综合评价。
3.
It is introduced that the BP neural network model of prediction of mining collapse is established based on the survey′s data and main factors at a mine field where the collapse had happen.
依据某煤炭开采区的勘察资料 ,综合考虑影响采空塌陷的主要因素 ,建立了预测采空塌陷的 BP神经网络模型。
5) BP neural network
BP神经网络模型
1.
Then the wavelet network model is established by the combination of BP neural network and used to forecast annual runoff at Beipei hydrologic station,and the forecasted result is compared with the forecasted result by BP neural network.
其次结合BP神经网络建立小波网络模型,并利用该模型对北碚站的年径流量进行预测,同时将预测结果与BP神经网络模型的预测结果进行了比较,比较结果表明:小波网络模型对径流变化的预测效果明显优于BP神经网络模型,为径流量的定量分析提供了一种新的方法。
2.
The principal component analysis of factors of BP neural network model and statistical regression model has been carried out by an example; and the effects of factor correlativity on the two kinds of dam monitoring models are studied.
通过实例分别对BP神经网络模型和统计回归模型进行了建模因子的主成分分析,通过对相应原始模型的比较,研究了因子相关性对两种模型的影响,结果证明因子相关性对BP神经网络模型基本无影响,对统计回归模型影响较大。
3.
BP neural network of LM calculation method was designed with Matlab language for predicting the road traffic noise.
运用 Matlab语言编程 ,构造预测交通噪声的 LM算法 BP神经网络模型 ,把预测因子 (轻、重型车流量、平均车速、受声点距路肩距离、敏感点高差 )作为样本输入到网络模型 ,噪声等效声级作为样本输出 ,反复训练网络 ,通过增加隐含层节点数、改进算法 ,以降低误差 ,缩短训练时间。
补充资料:神经网络BP算法
分子式:
CAS号:
性质:它是D.Rumellart等人提出的一个监督训练多声能神经网络的算法,每一个训练范例在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传递各层并经过处理后,产生一个输出,并得到一个该实际输出和所所需输出之差的差错矢量;一遍向反向传播计算,从输出层至输入层,利用差错矢量对权值进行逐层修改。BP算法有很强的数学基础,戏剧性地扩展了神经网络的使用范围,产生了许多应用成功的实例,对神经网络研究的再次兴起过很大作用。
CAS号:
性质:它是D.Rumellart等人提出的一个监督训练多声能神经网络的算法,每一个训练范例在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传递各层并经过处理后,产生一个输出,并得到一个该实际输出和所所需输出之差的差错矢量;一遍向反向传播计算,从输出层至输入层,利用差错矢量对权值进行逐层修改。BP算法有很强的数学基础,戏剧性地扩展了神经网络的使用范围,产生了许多应用成功的实例,对神经网络研究的再次兴起过很大作用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条