说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多通道快速算法
1)  multichannel fast algorithms
多通道快速算法
1.
This thesis focuses on the implementations and performances of multichannel fast algorithms based on filtered-X LMS algorithm in multichannel AANC systems.
本文研究基于滤波-X LMS算法的多通道快速算法性能及实现。
2)  Multi-channel Algorithm
多通道算法
3)  fast multipole algorithm
快速多极算法
1.
A new method,which combines the fast multipole algorithm(FMA) with high order impedance boundary condition(HOIBC),is proposed to analyze the radar cross section(RCS) of dielectric coated cylinders.
将快速多极算法(FMA) 与高阶阻抗边界条件(HOIBC) 相结合,分析了有介质涂层的电大尺寸导体柱的雷达散射截面(RCS) 。
4)  fast multipole method
快速多极算法
1.
The fast multipole method(FMM) was used with the boundary element method(BEM) to predict fractures in large castings.
将快速多极算法(FMM)应用到边界元法(BEM)中,对断裂力学问题进行大规模计算。
2.
The fast multipole method(FMM) is introduced to solve the magnetic vector potential in 3-D electromagnetoquasistatic field.
将快速多极算法(FMM)应用于三维准静态电磁场矢量磁位的求解,首先根据计算精度的要求把连续分布的场源进行离散化处理,然后通过静电类比分析,将求解三维准静态矢量磁位的问题转化为多体问题,进而利用快速多极方法来计算三维空间中载流导体产生的矢量磁位,可以将计算量由O(N2)降低为O(N)次运算,大大提高了计算速度。
5)  fast multipole method
快速多极子算法
1.
The time of computation is shortened by applying modified fast multipole method(FMM) in CMT.
根据电流步进法前向-后向迭代以及使用新值进行计算的高斯-塞得尔迭代的特点,算法将修改后快速多极子算法引入到电流步进法的计算中,加快了原始算法的计算速度。
2.
A fast algorithm—fast multipole method and conjugate gradient method (FMM CG)is developed to analyze electromagnetic scattering by electrically large three dimensional multi conducting bodies in this paper.
用快速多极子算法 (FMM)和共轭梯度法 (CG)求解三维电大尺寸复杂群目标的电磁散射特性。
6)  Fast Multipole Method
快速多极算法FMM
1.
Some Comments of Fast Multipole Method;
关于快速多极算法FMM的几点注解
补充资料:等待制的多通道排队


等待制的多通道排队
queue, multi -channel with waiting

  等待制的多通道排队[甲..,m川d .d.玻目初th俪山弓;Maccoaoro o6e周口曰川翻”,“e介Ma],多服务台排队 (m川U一sen戎犷queue) 一种排队,它为呼唤到达时刻系统正繁忙而形成的排队提供规则;这里呼唤的服务是在若干条通道中同时进行.其基本定义与记号与排队(q迸叱)条目中相同. 一个多服务台排队的运行由序列{;;,叮}控制如下呼唤到达于时刻0,T丁,T夸+:兰,·…:;为第J个呼唤服务所用时间,无论它在m()l)条通道中的哪一条中服务.如果不是所有通道都繁忙,那么呼唤到达后立即被送到(以到达的顺序)一条空闲通道服务.否则,等到某一通道空闲下来后开始服务.为了简单起见,令时刻t二O系统空闲 l)为了表达清楚,采用下列记号:w。二(叭,、,一,叭,。)为第刀个呼唤的等待时间向量,其中、。,,为此呼唤直到由其前到达的呼唤占用的i条通道空闲下来为止所等待的时间.因此,叭,,为“实”等待时间.另外,令x十=叮眼x(O,工), 、+二(x广,…,嵘), e二(l,0,…,0),i=(l,…,l),再令R(x)为把x的坐标以递增的顺序排列得到的向量(这样R(x)的第一个坐标为~(戈,,,二,x,”.那么,下面关于w,的递推关系成立: w。、,二〔R(w。+:二e)一T二i】+(l)它是一维情形的推广形式 如果{:歹,T夕}“G:且E(:二一m::)<0,那么存在一个真序列{w“}‘G:满足(1),且当n一的时w。的分布函数单调收敛到w分的分布函数.这个结果可以推广到叮笋1的情形,也可以推广到第刀个呼唤到达时的队长q。(队长q。不包括正在服务的呼唤)上.下面给出联系w。与q。极限分布的公式. 如果{T丁}‘G,,{;J}‘G,,那么由(1)可以写出有关w“平稳分布的积分方程.在这种情形,也可以给出队长与等待时间平稳分布之间的简单关系.特别是如果w竺表示向量w”的第k个坐标,那么对k)m一1,有 。叭p{q,>‘}二p{w;>‘下+‘’‘+‘戈一1}·如果m>k)0,那么 典凡p{。。)m一k}=p{w竺十.>O}·这里,概率符号下的所有随机变量都是独立的. 此外,如果:丁有非格点分布,那么对q(t)的极限分布,类似的公式也成立.如果王:丁}任E,那么 ”峡尸{“·=“}一:峡户{q(‘)一“}· 2)如果{:;}任G,,{:少}“E,那么可以给出。。,q(O及w,极限分布的显式公式.令!为可分布的指数且“mE了‘>l,则数 p*=厩p{。。=k}可由料及少(一j的,J=1,…,。,的有理函数明确地给出,其中召为方程 科二吵((拼一l)m仪),价(拜)=Ee”’‘在}川<1内的唯一根.如果k>m,那么 pk=A拼k一“,其中A不依赖于k.对等待时间的极限分布,有 一、Ae一州。(l一尹)x 体(x)二1面P子w_>x冬=一. ”一’.、”’i一拼如果T下为非格点随机变量,那么 ‘峡p{。(亡)=k}=夕*存在,其中 。=一」1二-1长‘成, K戊Ct 。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条