1) The envelope diagram of strain extremum
应变包络图
2) response envelopes
响应包络图
3) envelope diagram of shear stress
剪应力包络图
4) Envelope diagram
包络图
1.
Taking the Xiangtan Xiangjiang 4th bridge as an example,the planar finite element models of cable-stayed arch bridge are erected,and the influence line and envelope diagram of main arch are got by ANSYS software.
首次用ANSYS得到了影响线和包络图,根据包络图确定了最不利活载的加载位置,按照弯矩影响线进行布载,对几个典型工况的受力情进行了分析。
2.
In this paper,the internal force envelope diagram of the continuous frame bridge was calculated by computer simulating.
利用计算机仿真的方法给出了连续刚构桥的内力包络图。
3.
The calculation of internal force s envelope diagram for a bridge under moving loads is a typical problem which can be solved by the computer simulation.
移动荷载作用下的内力包络图的计算是一个典型的可以用计算机仿真解决的问题。
5) enveloping graph
包络图
1.
The research is done on boom placing bar multiple angles kinematical mechanism, the simulation of placing mechanism is realized and also the forming mechanism of enveloping graph is obtained.
针对混凝土泵车臂架布料机构特点,对其进行了折叠方式分析,研究了臂架布料杆倍角运动机构,实现了布料机构位姿仿真,给出了包络图形成机制
2.
The research has been done on boom placing bar multiple angles kinematical mechanism, the emulation of placing mechanism has been realized and also the forming mechanism of enveloping graph has been obtained.
针对混凝土泵车臂架布料机构特点,对其进行了折叠方式分析,研究了臂架布料杆倍角运动机构,实现了布料机构位姿仿真,给出了包络图形成机制。
3.
The research has been done on boom placing bar multiple angles kinematic mechanism, the emulation of placing mechanism has been realized and also the forming mechanism of enveloping graph has been obtained.
针对混凝土泵车臂架布料机构特点,对其进行了折叠方式分析,研究了臂架布料杆倍角运动机构,实现了布料机构位姿仿真,给出了包络图形机制。
6) negative envelope graph
负包络图
1.
Negative Envelope Graph──an important and special structure in thenetwork is revealed.
本文提出了网络中的一种特殊结构──负包络图。
补充资料:包络
包络
envelope
而充分条件是f任C,,并且满足(9)和下列条件: D ff.f.几、_Df云.几、 二二上二坦述二乙竺乙笋O,共月典二书笋砖0. D(x,y,z)一’D(A,B)对于曲面族r(u,。,A,B),其中r任C,和rux瓦护0,必要条件是 甲=(ru孔rA)=0,少=(气凡rB)=0,(10)而充分条件是r任口,并且满足(l0)和 }〕三三,三},。,、,。. !叭凡巧几心礼峪l n维流形中依赖于k个参数的一族m维子流形包络的更复杂概念可在可微映射奇异性理论的基础上引出,作为一族映射的奇异性的特殊形式.给出的平面曲线族,其中C是族的参数,“是沿族中曲线的参数,一点在包络上的必要条件是几11rc,或 ,一孚毕共~一。,(3) D(u,C)两者是同一回事. 充分条件是r‘CZ并且除满足(3)外还要满足 几共一rc叭笋0.(4)违反条件(2)和(4)往往与包络上出现尖点有关. 空间依赖于单参数C的曲面族的包络(山volopeofa fami】y ofsur阮璐)是这样的曲面,使得其上每个内蕴参数为(u,v)的点与族中参数为C(“,v)的曲面相接触,并且函数C(u,v)在(u,。)定义域的任何区域上不是常数.例如,中心在一直线上的同半径球面族的包络是一个柱面.对于由f(x,y,z,C)=0给出的曲面族,其中f“c’和沃廿诱l+匡}护0,包络的必要条件是满足方程组 了=0,fc=0;(5)而充分条件是fe口并且除(5)外再加上条件: fc。笋0,(6) }卫丝二玉立{+}卫艾2五立}+}卫丛选立},。. }L, Lx,y)}}L,沙,z)1】L,Lz,x)!对于曲面族r(u,v,C),其中r‘C’和‘x凡笋0,包络的必要条件是满足方程 职=(凡几几)=0;(7)而充分条件是r任CZ并且除(7)外还要满足下列条件: }叭叭毋。l }r二ru凡rurc}特o,}礼j+I叭i笋0.(8) l孔叽嵘几rc!违反条件(6)和(8)中的第一式往往与包络上出现尖棱有关.包络与族中每张曲面的接触线称为特征线(cl坦份以eristiC clu货).包络上的尖棱通常就是特征线的包络. 空间依赖于双参数A和B的一族曲面的包络是这样的曲面,使得其上每点(u,v)与族中参数为A(u,v)和B(u,岭的曲面相接触,并且在(u,v)定义域的任何区域上不存在函数。‘c’使A(“,好二。(B(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条