1) Pseudo monotone semiflow
伪单调半流
2) monotone semiflow
单调半流
1.
Using the theory of monotone semiflows,we study the asymptotic behavior of the solutions to a class of functional differential equations.
本文利用单调半流理论研究一类非线性泛函微分方程的渐近性态,发展了HirschM。
3) mixed monotone semiflow
混合单调半流
1.
In this paper we first give a concept on mixed monotone semiflows and a condition forfunctional differential equations to generate a mixed monotone semiflows.
本文首先提出混合单调半流的概念和泛函微分方程生成这种半流的条件。
4) monotone skew-product semiflows
单调斜积半流
1.
In this paper,we consider a class of monotone skew-product semiflows with minimal base flows.
本文研究了一类具有极小基流的单调斜积半流。
5) pesudomotone
伪单调
1.
We proved that under the condition that the function F is pesudomotone,the sequence generated by the method converges to a solution of the variational inqueality problem globally,thus the method can be used extensively.
并在伪单调的条件下证明了算法是全局收敛的,使得该算法的适用性更广。
6) implicit-pseudomonotone
隐伪单调
补充资料:半伪Euclid空间
半伪Euclid空间
semi-pseudo-Euclidean space
半伪五”d记空间f胭I幼一碑”心一h凶山汾n习.Ce;n。刃-nce.月oe卿“月OBo nP0c甲明cTBO] 具有退化的不定度量的向量空间.半伪Euclid空间‘’‘,R:”’,一’定义为一个刀维空间,在其中给定了厂个数量积 (二,力“二艺气二味y’u,这里O=椒(、<俐l<一
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条