说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 空间杆系有限元法
1)  Spatial Finite Element Method of Bar System
空间杆系有限元法
2)  finite element of spatial frame structure
空间杆系有限元
3)  space member system element finite model
空间杆系有限元模型
1.
The paper introduces the characteristics of the second storey rigid bridge of Quzhuang Interchange in Guangzhou City and establishes space member system element finite model for making the static and dynamic analysis to provide the theory basis for design.
简单介绍了广州市区庄立交第二层刚架桥的特点,并建立了空间杆系有限元模型,对其静力、动力进行详细分析,为设计提供理论依据。
4)  pole system finite element method
杆系有限单元法
1.
In order to satisfy the requirements of design and calculation of piles subjected to laterally parabolic distributed loads,the finite difference method and the pole system finite element method of elastic foundation are presented and discussed in order to compute the displacements and internal forces by adopting biparameter method of lateral subgrade reaction.
为适应抛物线分布荷载推力桩的设计和计算的需要,提出和探讨地基水平抗力系数按双参数模式表达下桩身位移和内力计算的有限差分法和弹性地基杆系有限单元法。
2.
Aimed at problems lying in the existing m methods for calculation of laterally loaded piles installed in multi-layered soils,the finite difference method and the pole system finite element method of elastic foundation beam with elastic links were presented in order to compute the displacements and internal forces by adopting actual modulus of subgrade reaction of layered soils.
针对现行多层地基中水平荷载桩计算m法存在的问题,提出了按实际成层地基抗力系数采用有限差分法和弹性地基杆系有限单元法计算桩身位移和内力的方法,编制了全桩位移、内力计算和图形处理程序。
5)  bar-system finite element
杆系有限元法
6)  space finite element method
空间有限元法
1.
In this paper the pole structure on the transmission line has been researched,and in the theories it applies the software SAP2000 to set up a model to carry on the space finite element method analysis,to sign by verifying that the pole of the reinforced plastic have the certain safety degree in the transmission line,and so as to supply the theories to the large-scale pole structure.
对输电线路中杆式结构进行了系统的研究,采用应用软件SAP2000建模进行空间有限元法分析,以验证该玻璃钢抢修杆应用于输电线路中具有一定的安全度,为大尺寸杆式结构提供理论依据。
补充资料:弹—塑性有限元法


弹—塑性有限元法
elastic-plastic finite element method

刚度矩阵,进行下一个增量步计算,直到求得整个弹一塑性间题的解。根据采用的刚度矩阵形式,可分为切线刚度法和割线刚度法。 .代法是对变形体施加载荷采用某一近似刚度矩阵求出初步位移解,根据此解计算应力和相应的载荷,并用载荷的差值继续计算附加位移增量,按上述步骤进行叠代,直到附加位移小到某一许可值为止。把所有的位移叠加起来,即得到要求的解。根据刚度矩阵的形式不同可分为直接叠代法、牛顿法、修正牛顿法和拟牛顿法等。混合法把逐步加载法和叠代法同时使用,在某一增量步内进行叠代以提高计算精度。 大变形弹一塑性有限元法大变形理论中,物体变形的描述有两种方法:拉格朗日法和欧拉法。拉格朗日法追随质点研究物体的变形,质点以在某一构形下的位置标记,称为物质坐标系或拉格朗日坐标系。此构形称初始构形。欧拉法以空间固定的坐标(欧拉坐标系)来描述质点的运动,其坐标随质点和时间而变化。物体在任一时刻的构形称现时构形。 物体的现时坐标x,相对于物质坐标的偏导数刁x,/ax’称变形梯度。它把参考构形中质点凡的邻域映射到现时构形x‘的一个邻域,刻划了整个变形(线元的伸缩和转动)。它是有限变形理论的重要物理量。 大变形有限元中,应变张量有两种表示形式:以初始构形定义的格林应变张量和以当前构形为参考构形的阿尔曼西应变张量(见应变张量)。应力张量根据定义方式不同有3种形式:柯西应力张量(有时称欧拉应力张量),拉格朗日应力张量和克希霍夫应力张量。为保证应力不受刚体转动的影响,在本构关系中采用耀受应力率: 此一房,一氏户。户,一‘。,式中礼为欧拉应力率。 用欧拉法描述的大变形弹一塑性有限元的速率形本构关系为 弓一Dl*勺式中如为应变速度。欧拉描述的虚功方程是 万氏,“一dy一万尸!占一+好一‘1)式(1)的左端为变形能,右端是体积力F和表面力p在虚位移而:上做的虚功。在分析金属成形大变形过程时也常用欧拉描述法并忽略弹性体积微小变化的增量虚功率方程(见虚功原理)由此方程出发可得如下的平衡方程: K滋一尺式中K为刚度矩阵,它由小变形弹一塑性刚度矩阵和初应力刚度矩阵组成;成为节点速度列阵。 欧拉描述的虚功方程式(l)可按变换规则转化为拉格朗日描述的虚功方程,并由此可得如下的平衡方程式: K(u)u=R式中K(u)称刚度矩阵,由3部分组成:K(u)一KL+KN+Ks。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条