1) soil-piles-structure dynamic interaction
土-桩-结构动力相互作用
2) pile-soil-structure dynamic interaction
桩-土-结构动力相互作用
1.
Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site;
液化场地桩-土-结构动力相互作用的有限元分析
2.
The research of pile-soil-structure dynamic interaction is very important to improve the reliability and safety of pile foundation under dynamic loads.
桩-土-结构动力相互作用机理与工作性能研究是提高动力作用下桩基础安全性的重要基础。
3.
The seismic response analysis method of transmission tower in consideration of pile-soil-structure dynamic interaction is presented.
提出了考虑桩-土-结构动力相互作用的输电塔地震反应分析方法。
3) pile-soil structure dynamic interaction
桩土-结动力相互作用
4) pile-supported-structure dynamic interaction
桩基-结构动力相互作用
5) structure-pile foundation dynamic interaction
结构-桩基动力相互作用
6) dynamic interaction of pile-soil-bridge structure
桩-土-桥梁结构动力相互作用
1.
In order to solve the similitude problem of shaking table scale modle test of dynamic interaction of pile-soil-bridge structure in ground of soil liquefaction,based on the theorem of Bockingham p widely applied at present,the dimensional .
基于目前广泛应用的Bockinghamπ定理,主要采用量纲分析方法,并且结合考虑模型与原型之间的材料变形应力-应变本构关系及桩-土接触边界动力响应相似性,求解液化场地桩-土-桥梁结构动力相互作用振动台试验的模型设计相似关系,同时提出人工质量问题的解决办法。
补充资料:γ射线同物质的相互作用
γ射线在物质中具有较强的穿透本领。能量在10MeV以下的γ射线同物质相互作用时,主要是发生光电效应、康普顿效应、电子偶效应等三种效应。
光电效应 γ光子穿过物质时同原子中的束缚电子相互作用,光子把全部能量交给这一束缚电子,使之克服在原子壳层中的结合能(电离能)而发射出去,这就是光电效应。光电效应截面以一种复杂的方式随入射光子能量和吸收体原子序数而改变,但总的趋势是随光子能量增加而减小,随原子序数增加而增加。在光子能量小于1MeV时,光电效应在三种主要效应中占优势,光电截面在总截面中占主要部分。
康普顿效应 当入射光子能量逐渐增大到1MeV时,γ射线同物质相互作用逐渐由光电效应过渡到康普顿效应。
康普顿效应是γ光子同电子之间的散射。入射γ光子把一部分能量传递给电子,光子本身能量减少并向不同的方向散射,散射效应中获得能量的电子叫反冲电子(图1)。能够发生散射效应的电子既可以是自由电子,也可以是束缚于原子之中的电子。康普顿效应发生在γ光子和电子之间,其作用截面是对单个电子而言的。因此,对原子序数为Z的整个原子,散射截面就是单个电子作用截面的 Z倍。当入射光子能量较高时,截面与光子能量近似成反比。
电子偶效应 是γ光子同物质的第三个重要的相互作用,入射光子同原子核电场或电子电场相互作用都可以产生电子偶效应,发生这个效应的阈能是1.02MeV。在电子偶效应中,入射光子转化为一个正电子和一个负电子,它们的动能是入射光子能量同1.02MeV之差。电子偶效应的截面也是入射光子能量和吸收物质原子序数的函数。当入射光子能量稍大于 1.02MeV时,电子偶效应的截面随光子能量E 线性增加;在高能时,其截面正比于lnE;能量很高时,截面趋近于一个常数。然而不论在高能或低能,截面都正比于吸收体原子序数Z的二次方。
其他效应 除上述主要的三种效应外,γ射线同物质的相互作用还有其他的效应, 如相干散射。 在低能(100keV)时,相干散射是很重要的,尤其是重元素中束缚得比较紧的电子有利于这种散射。这种散射长期以来一直是X 射线晶体学的基础。另外在入射光子能量较高时还有光核反应等。
γ射线的吸收 当γ射线穿过物质时,三种效应都可能发生。在忽略其他效应时,将这三种效应的吸收系数相加就可得到总的线性吸收系数。式中μph、μσ、μp分别表示这三种效应中的吸收系数。图2表示γ射线在铅中产生三种不同效应的几率。
窄束γ 射线在物质中的衰减规律是 或,其中Io、I分别代表穿透前后的γ射线强度,μ是吸收系数,μm是质量吸收系数,ⅹ是γ射线穿过的厚度,ⅹm是质量厚度。
由于γ射线穿过物质时会发生各种效应,同时γ射线又很容易被探测到,使得γ射线在诸如工业探伤、测厚、冶金、自动化、医疗等方面都获得广泛的应用。
参考书目
K. Siegbahn, ed., Alpha-, Beta- and Gamma-Ray Spectroscopy,Vol. 1,North-Holland,Amsterdam,1965.
光电效应 γ光子穿过物质时同原子中的束缚电子相互作用,光子把全部能量交给这一束缚电子,使之克服在原子壳层中的结合能(电离能)而发射出去,这就是光电效应。光电效应截面以一种复杂的方式随入射光子能量和吸收体原子序数而改变,但总的趋势是随光子能量增加而减小,随原子序数增加而增加。在光子能量小于1MeV时,光电效应在三种主要效应中占优势,光电截面在总截面中占主要部分。
康普顿效应 当入射光子能量逐渐增大到1MeV时,γ射线同物质相互作用逐渐由光电效应过渡到康普顿效应。
康普顿效应是γ光子同电子之间的散射。入射γ光子把一部分能量传递给电子,光子本身能量减少并向不同的方向散射,散射效应中获得能量的电子叫反冲电子(图1)。能够发生散射效应的电子既可以是自由电子,也可以是束缚于原子之中的电子。康普顿效应发生在γ光子和电子之间,其作用截面是对单个电子而言的。因此,对原子序数为Z的整个原子,散射截面就是单个电子作用截面的 Z倍。当入射光子能量较高时,截面与光子能量近似成反比。
电子偶效应 是γ光子同物质的第三个重要的相互作用,入射光子同原子核电场或电子电场相互作用都可以产生电子偶效应,发生这个效应的阈能是1.02MeV。在电子偶效应中,入射光子转化为一个正电子和一个负电子,它们的动能是入射光子能量同1.02MeV之差。电子偶效应的截面也是入射光子能量和吸收物质原子序数的函数。当入射光子能量稍大于 1.02MeV时,电子偶效应的截面随光子能量E 线性增加;在高能时,其截面正比于lnE;能量很高时,截面趋近于一个常数。然而不论在高能或低能,截面都正比于吸收体原子序数Z的二次方。
其他效应 除上述主要的三种效应外,γ射线同物质的相互作用还有其他的效应, 如相干散射。 在低能(100keV)时,相干散射是很重要的,尤其是重元素中束缚得比较紧的电子有利于这种散射。这种散射长期以来一直是X 射线晶体学的基础。另外在入射光子能量较高时还有光核反应等。
γ射线的吸收 当γ射线穿过物质时,三种效应都可能发生。在忽略其他效应时,将这三种效应的吸收系数相加就可得到总的线性吸收系数。式中μph、μσ、μp分别表示这三种效应中的吸收系数。图2表示γ射线在铅中产生三种不同效应的几率。
窄束γ 射线在物质中的衰减规律是 或,其中Io、I分别代表穿透前后的γ射线强度,μ是吸收系数,μm是质量吸收系数,ⅹ是γ射线穿过的厚度,ⅹm是质量厚度。
由于γ射线穿过物质时会发生各种效应,同时γ射线又很容易被探测到,使得γ射线在诸如工业探伤、测厚、冶金、自动化、医疗等方面都获得广泛的应用。
参考书目
K. Siegbahn, ed., Alpha-, Beta- and Gamma-Ray Spectroscopy,Vol. 1,North-Holland,Amsterdam,1965.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条