说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Katafuchi积分
1)  Katafuchi mark
Katafuchi积分
2)  Katafuchi semiquantitative analyses
Katafuchi评分标准
3)  Integral Area
积分面积
4)  Volumetric integration
体积积分
5)  convolution integral
卷积积分
1.
The main idea behind this method was firstly to utilize convolution integral to calculate pointwise curvature through resampling the contour in multiscale space, and then the feature points were selected.
该方法的基本思想是首先采用卷积积分的方法 ,在多尺度空间里通过对轮廓进行重采样来计算轮廓上每一点的曲率并选取特征点。
2.
There are two difficult points in convolution integral: how to determine the limit of the integral, and the integrands on the convolution integral.
确定卷积积分的积分限和在相应区间上的被积函数是计算卷积积分的两个难点。
3.
The zero state response to an arbitrary excitation in a fist order circuit can be solved by either the convolution integral or the three element method.
一阶电路在任意激励下的零状态响应,既可以用卷积积分法,也可以用三要素法进行分析与计算。
6)  area integral
面积积分
1.
Weighted Hardy Space and Weighted Norm Inequalities of the Area Integral;
加权的Hardy空间和面积积分的加权模不等式
2.
Using the Calderon-Zygmund operator theory,we obtain a Calderon-type representation theorem,and a generalized area integral characterization for Hardy spaces is obtained by its application.
给出 Rn 上一个 Calderon型表示定理 ,利用这一定理得到 Hardy空间的广义面积积分特征 。
补充资料:Abel积分方程


Abel积分方程
Abel integral equation

Abel积分方程【Abel in.雌旧equ硕皿A6eJ.“I.Tef-pa月b.0吧坪朋业服e飞 积分一厅程 i黯*一f(x),、均这个方程是在求解Abel问题(Abel Problem)时推出 的.方‘程 i恶:*二f(x),一“、2)称为广义Abel积分方程(罗neralized Abel irlte『aleqUation).其中a>o,0<,<】是已知常数,厂(x)是已 知函数,而诚x)是未知函数.表达式(x一s)““称为Abel 积分方程的核( kernel)或Abel核(Abel kernel).Abel 积分方程属于第一类v日te皿方程〔Volterra equa- tion).方程 争一里红上-ds_,、x、.。、*、。。3) 么}x一s}- 称为具有固定积分限的Abel积分方程(Abel integral 叫uation with fixed limits). 如果f(x)是连续可微函数,则Abel积分方程(2) 具有唯一的连续解,这个解由公式 sma,d今f(r、dt“、 坦《XI=——,一一川‘日‘曰‘‘‘‘~-叫、,厂 仃ax么(x一t),一“或者、、ina,!。a、今厂,(,、*1 叭戈今二—}一十l一}、J) 万l(x一“)’“么(x一t)’‘’{给出.公式(5)在更一般的假设下给出了Abel方程(2)的解(见【3},[4]).从而证明了(【3]):如果八;。)在区间【ab]一上绝对连续,则Abel积分方程(2)具有由公式(5)给出的属于Lebesgue可积函数类的唯一解关于Abel积分方程(3)的解,见121;亦见{61.【补注】(2)的左边也称为凡emann一Liouville分式积分,其中Re在
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条