1) Tandem elastic circular culinders
串列弹性圆柱体
2) tandem circular cylinders
串列弹性圆柱
3) Elastic circular twin-cylinders arranged in parallel
并列弹性圆柱体
4) circular cylinders in tandem arrangement
串列圆柱
1.
Numerically we analyze the unsteady flow around two stationary circular cylinders in tandem arrangement with high Reynolds number.
用二阶投影法求解二维不可压粘性流体的N -S方程 ,计算了高雷诺数Re=1× 10 5下串列圆柱的非定常绕流 ,得到的阻力系数及斯特劳哈尔数与试验结果吻合良好 ,结合工程实际 ,用同一程序计算预测了钢管混凝土拱桥哑铃型拱肋的阻力系数和涡脱频
5) two circular cylinders in tandem
串列双圆柱
1.
The pressure distributions on the surfaces of two circular cylinders in tandem arrangement at Re=2×104 were simultaneously measured at 12 different distances,and integrated to acquire the time series of fluctuating lifts and drags.
本文在雷诺数2×104下,同步测量了12个不同间距下串列双圆柱的表面压力分布,积分得到脉动升、阻力的时间历程,并对前、后柱之间的脉动升、阻力以及脉动升阻力和圆柱表面的脉动压力进行了相关分析。
6) two elastic cylinders
两弹性圆柱体
1.
It was the most useful in the engineering that the contact pressure problem when two elastic cylinders crossangle is less than 20, but in the existing data the relation of the concerned coefficient can not be found.
两弹性圆柱体轴线在交叉角小于20°时的接触压力问题在回转窑中最有用,但是在现有的资料中查不到有关的系数值。
补充资料:横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
垂直于柱轴(横向)磁场H0中的空心超导长圆柱体就其磁性质讲是单连通超导体。徐龙道和Zharkov由GL理论给出中空部分的磁场强度H1和样品单位长度磁矩M的完整解式,而在`\zeta_1\gt\gt1`和$\Delta\gt\gt1$条件下为:
$H_1=\frac{4H_0}{\zeta_1}sqrt{\frac{\zeta_2}{\zeta_1}}e^{-Delta}$
$M=-\frac{H_0}{2}r_2^2(1-\frac{2}{\zeta_2})$
这里r1和r2分别为空心柱体的内、外半径,d=r2-r1为柱壁厚度,ζ=r/δ(r1≤r≤r2),Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。显然此时H1→0,M→-H0r22/2,样品可用作磁屏蔽体。当$\zeta_1\gt\gt1$,$\Delta\lt\lt1$时,则
H1=H0/(1 ζ1Δ/2),
M=-H0r23[1-(1 ζ1Δ/2)-1]。
若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场几乎为薄壁所屏蔽而难于透入空心,称ζ1Δ/2为横向磁场中空心长圆柱体的屏蔽因子。当$\zeta_1\Delta\lt\lt1$时,则H1≈H0,磁场穿透薄壁而均进入空腔,失去屏蔽作用,此时M≈0。类似于实心小样品,由GL理论可求出薄壁样品的临界磁场HK1,HK,HK2和临界尺寸等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条