1) bio-electro denitrification
生物电极反硝化
2) biological nitrification and denitrification
生物硝化反硝化
3) biological nitrification-antidigesting
生物硝化-反硝化
1.
Based on the biology, offers to use the biological methods such as biological nitrification-antidigesting reaction, planting the water plant in natural water bodies, sewage irrigation, lagoon and so on, to get rid of N, P in water bodies, thus to avoid the appearance of eutrophication of water bodies.
从生物学角度,提出利用生物硝化-反硝化、天然水体中种植水生植物、污水灌溉及氧化塘等生物学方法,达到去除水体中氮、磷等物质的目的,避免水体富营养化的发生。
4) electrochemical bio-denitrification
电化学生物反硝化
1.
Complete autotrophic nitrite-nitrification and electrochemical bio-denitrification combined process;
亚硝化/电化学生物反硝化全自养脱氮工艺研究
5) biological denitrification
生物反硝化
1.
In the paper,biological denitrification,selection of electron donor and reactor in the treatment of drinking water and their application were introduced.
生物反硝化脱氮是饮用水处理脱氮的有效方法。
2.
It was shown that the biological denitrification process with cotton and paper as carbon source and reaction media could remove nitrate from the underground water successfully,but that with rice straw and wood flour as carbon source and reaction media had poorer effect;pH values in the effluent of four reactors had smaller chang.
结果表明:以棉花和纸为碳源和反应介质的生物反硝化法能成功地去除地下水中硝酸盐。
3.
The carbon source satisfied with biological denitrification process.
以淀粉和聚乙烯醇为原材料,采用高分子制造技术,通过共混/包覆制备出一类地下水原位生物反硝化用控释高分子碳源材料。
6) denitrification
[di:naitrifi'keiʃən]
生物反硝化
1.
Research progress and application prospect of denitrification process in an upflow sludge blanket reactor;
USB反应器进行生物反硝化的研究现状与应用前景
2.
However, denitrification is even more promising and is currently under conpre-hensive study.
通过分析比较,认为离子交换法和生物反硝化法都可用于大规模生产饮用水,但最有发展前途目前研究最多的是生物反硝化法。
补充资料:生物电极
分子式:
CAS号:
性质:利用生物物质对特定物质具有选择性亲和性,将生化反应转换为电信号的一种装置。由分子识别部分(感受器)和信号转换部分(转换器)组成:前者是将生物体中具有分子识别功能的结合蛋白质、抗原、抗体、微生物、植物及动物组织、等固定在某种载体上构成的。后者是将特异反应转换为信号的部分。载体可选用聚氨酯等医用高分子材料。
CAS号:
性质:利用生物物质对特定物质具有选择性亲和性,将生化反应转换为电信号的一种装置。由分子识别部分(感受器)和信号转换部分(转换器)组成:前者是将生物体中具有分子识别功能的结合蛋白质、抗原、抗体、微生物、植物及动物组织、等固定在某种载体上构成的。后者是将特异反应转换为信号的部分。载体可选用聚氨酯等医用高分子材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条