1) Air-water exchange
大气-水体交换
2) Air/water exchange
水/气交换
3) the gas-liquid exchange
水气交换
1.
However, the analysis whether the door moves badly or stablely is merely depent on physical model, because many factors affect its movement, such as the size of hole in the tidal cabin, the gas-liquid exchange in operating cabin, wind and wave.
一般设计主要是根据规范和相关经验满足其卧倒门基本的起卧性能,然而对于其起卧性能的评价主要还是依赖于物理模型试验,这主要是由于它在水中的运动状态比较复杂,受到多种因素的影响,如潮汐舱的水气孔的面积、空气操作舱水气交换的相互作用、水流、风浪等等。
4) gas exchange
气体交换
1.
Combined impact of ozone and simulated acid rain on gas exchange,growth and yield of field-grown winter wheat;
臭氧和模拟酸雨对冬小麦气体交换、生长和产量的复合影响
2.
An experimental study on the effect of different endotracheal suctions on the gas exchange in ARDS dog lung;
不同吸痰方式对ARDS犬肺内气体交换影响的实验研究
3.
Effects of sustained inflation on hemodynamics and gas exchange in rabbits with acute respiratory distress syndrome;
控制性肺膨胀对急性呼吸窘迫综合征家兔血流动力学和气体交换的影响
5) water exchange
水体交换
1.
Based on the analysis of the data obtained from in situ tidal cycle measurements, water exchange patterns in Bo ao Harbour were obtained.
依据全潮水文观测资料,估算了博鳌港的水体交换参数。
6) gaseous interchange
气体交换;换气
补充资料:气体在海洋与大气间的交换
大气中的二氧化碳及其他各种气体,不断通过界面进入海水;各种海水溶解气体,也不断越过界面进入大气:形成了气体成分在海-气之间的交换。学者们提出过一些不同的模型,来解释这种交换的过程,其中常用的是"滞膜模型"(见图)。它假定液相的界面存在一层滞膜,气体成分通过滞膜的方式是分子扩散。由于扩散的速度比较慢,因此滞膜的厚度及其状态是控制气体交换速率的决定因素。
按此模型,气体进入液相的速率为
式中G为通过滞膜的气体量;t为气体成分通过滞膜的时间;DG为气体分子扩散系数;KG为气体的亨利定律的常数;A为交换面积;Z为滞膜扩散层厚度。令EG=DG/Z,则为
EG为经验常数,称为逸出系数;又因它具有速度的量纲,常称为交换速率。通过实验室的模拟试验或现场的研究,可求出EG,用它估算气体在海-气间的交换量。测试的方法不同,所得的EG也不同,但一般为(2~17)×10-3厘米/秒。在"海洋断面地球化学研究计划" (GEOSECS)的调查中,曾测定了氡自海水中逸入大气的速率,算出世界大洋 100多个观测站位的EG。总结起来,EG在赤道海区最小,在南极海区最大,20°C时大洋EG的平均值为3.3×10-3厘米/秒,对应的滞膜厚度为63微米。
温度升高时,气体在海-气之间的交换速率增加;海面风速增大时,滞膜厚度减小,交换速率也随着增加。但是不同的模拟研究表明:有的EG与风速成指数关系,有的则成线性关系。而在现场测定氡自海水中逸入大气的速度时,发现EG随风速的增加而增加。究竟是什么关系,仍待进一步研究。
海水的微表层富含有机物,也会影响气体在海-气间的交换速率。至于在微表层中发生的微生物过程、光化学过程和催化反应过程中产生的某些气体,其交换过程如何,也有待于研究。
参考书目
J.P.Riley,G.Skirrow,eds,ChemicalOceanography,2nd ed.,Vol.1,Chapter 8,Academic Press,London,1975.
按此模型,气体进入液相的速率为
式中G为通过滞膜的气体量;t为气体成分通过滞膜的时间;DG为气体分子扩散系数;KG为气体的亨利定律的常数;A为交换面积;Z为滞膜扩散层厚度。令EG=DG/Z,则为
EG为经验常数,称为逸出系数;又因它具有速度的量纲,常称为交换速率。通过实验室的模拟试验或现场的研究,可求出EG,用它估算气体在海-气间的交换量。测试的方法不同,所得的EG也不同,但一般为(2~17)×10-3厘米/秒。在"海洋断面地球化学研究计划" (GEOSECS)的调查中,曾测定了氡自海水中逸入大气的速率,算出世界大洋 100多个观测站位的EG。总结起来,EG在赤道海区最小,在南极海区最大,20°C时大洋EG的平均值为3.3×10-3厘米/秒,对应的滞膜厚度为63微米。
温度升高时,气体在海-气之间的交换速率增加;海面风速增大时,滞膜厚度减小,交换速率也随着增加。但是不同的模拟研究表明:有的EG与风速成指数关系,有的则成线性关系。而在现场测定氡自海水中逸入大气的速度时,发现EG随风速的增加而增加。究竟是什么关系,仍待进一步研究。
海水的微表层富含有机物,也会影响气体在海-气间的交换速率。至于在微表层中发生的微生物过程、光化学过程和催化反应过程中产生的某些气体,其交换过程如何,也有待于研究。
参考书目
J.P.Riley,G.Skirrow,eds,ChemicalOceanography,2nd ed.,Vol.1,Chapter 8,Academic Press,London,1975.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条