1) Metallic ultra-fine powders
金属超细粉末
2) ultrafine metal powders
超细金属粉末
1.
The calculated and analized the energy of process of manufacturing ultrafine metal powders through vacuum evaporating condensating.
对真空蒸发—冷凝制备超细金属粉末之蒸发过程所需能量进行了较为详尽的理论计算与分析。
3) Ultrafine precious powder
贵金属超细粉末
4) subsmicron metal
超细金属粉末[冶]
5) ultrafine metallic powder
超细金属粉
1.
Ultrasonic electrolysis process for preparing ultrafine metallic powder is investigated in this paper.
本文介绍了超声电解法制备超细金属粉的工艺方法 ;通过改变溶液浓度、超声功率、电流密度等条件 ,探索了制备超细铜粉和镍粉的工艺条件 ;用透射电镜 ( TEM)、X射线小角散射 ( SAXS)、X射线衍射 ( XRD)等对所得粉末进行了粒度的判别和结构分析。
补充资料:超细粉末
超细粉末
ultrafine powder
超细粉末ultrafine powder颗粒尺寸小于0 .1月m的粉末。最早给出超细粉末定义的是日本的上田良二。现研究和应用最多的是金属、铁氧体及陶瓷超细粉末。 自19世纪60年代胶体化学建立以来,科学家们一直把处于1一1000nln范围的颗粒作为研究的对象。20世纪60年代,在研究小于10nln的金属超细粉末时,日本科学家久宝发现了金属超微粒子的电子特殊性,即超微粒子保持电中性,对比热、磁性和超导性都有影响。这个现象又得到了很多科学工作者的验证。因此,科学界把这一发现命名为久宝效应。久宝效应的发现使科学家们开始了对超细粉末的开发和应用研究,并在电子、化工、冶金、航空、农业、医学等方面取得了一些研究成果。 特性和应用超细粉末所具有的奇特功能,主要是超细粉末的表面效应和体积效应共同作用的结果。当超表1超细粉末的表面能和比表面积┌───┬──────┬───────┬────┐│粒径 │ 表面能 │表面能/总能量 │比表面积││(nnl) │(e限/mol) │ (%) │(mZ/g) │├───┼──────┼───────┼────┤│2 │2 .04 X 1012│35 .3 │452 │├───┼──────┼───────┼────┤│5 │8 .16X10,’│14.1 │181 │├───┼──────┼───────┼────┤│10 │4 .08XIOll │7 .6 │90 │├───┼──────┼───────┼────┤│100 │4 .08X1010 │0 .8 │9 │└───┴──────┴───────┴────┘表2裹面原子数与总原子致之比┌───┬────┬─────────┐│粒径 │原子总数│表面原子/总原子数 ││(nlll)│ (个) │ (%) │├───┼────┼─────────┤│1 │30 │99 │├───┼────┼─────────┤│2 │250 │80 │├───┼────┼─────────┤│5 │4000 │40 │├───┼────┼─────────┤│l0 │30000 │20 │└───┴────┴─────────┘细粉末的粒径为Inm时,颗粒中大约包含30个原子,它们大部分都在颗粒表面,所以每个颗粒都具有极高的表面能。从表1和表2中可以看出超细粉末所具有的表面效应。 在超细粉末的体积效应方面,现已发现,当颗粒小到一定程度后,物质的本性,如金属的比热容、磁性、超导性等便发生变化。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条