1) Non-bonded interactions
非键相互作用
1.
the Special Hydrogen atom, the parameters of seven non-bonded interactions have been determined from 22 conformers of alanine polypeptides.
定义了丙氨酸多肽中的特殊氢原子,对构象中与特殊氢原子有关的主要非键相互作用进行分析,确定了其相应参数及丙氨酸-α-多肽的库仑模型,探讨了电荷、平均电荷在库仑模型中的作用。
2) non-covalent interactions
非共价键相互作用
3) Intramolecular non-bonded interaction
分子内非键相互作用
4) Hydrogen bond interaction
氢键相互作用
1.
Static adsorption experiment results show that the macromolecules of PEI on silica particles can produce strong adsorption force for trihydroxyl purine that is a tautomer of uric acid by hydrogen bond interaction.
静态吸附实验结果表明,凭借强烈的氢键相互作用,硅胶表面的聚胺大分子PEI对脲酸的互变异构体三羟基嘌呤具有很强的吸附能力,等温吸附满足Freundlich吸附方程,饱和吸附量可达84。
5) weak hydrogen bonding interaction
弱氢键相互作用
6) Hydrogen bonding interaction
氢键相互作用
1.
The hydrogen bonding interactions in a series of cobaltic supramolecular complexes [12]aneN_4 [Co(CN)_6], [18]aneN_6 [Co(CN)_6 ], [24]aneN_8 [Co (CN)_6], [16]aneN_4 [Co(CN)_6], [24]aneN6_ [Co(CN)_6] and [32]aneN_8 [Co (CN)_6 ] were studies and found to be closely related to the molecular conformations in the aqueous solution.
钴超分子络合物[12]aneN_4[Co(CN)_6],[18]aneN_6[Co(CN)_6],[24]aneN_8[Co(CN)_6],[16]aneN_4[Co(CN)_6],[24]aneN_6[Co(CN)_6]以及[32]aneN_8[Co(CN)_6]中,氢键相互作用的程度与它们在水溶液中的构象密切相关,从而引起~(59)Co的化学位移向高场移动,并且其四极矩耦合作用也随构象发生了变化。
补充资料:非谐相互作用
晶体中原子偏离平衡位置引起晶体的相互作用势能的变化。势能对原子偏离作展开,只取到二阶项,即作简谐近似时,点阵振动表达为相互独立的点阵波的叠加(见点阵动力学)。展开的高阶项称非谐相互作用项,它们引起的效应称非谐效应。
许多现象在简谐近似下是无法解释的,最熟知的例子是晶体的热膨胀。谐振子的平均位置不因振幅的改变而变化,所以简谐近似下晶体没有热膨胀。而考虑非谐作用,可以解释这现象。这时,非谐作用可归结为点阵波频率ωj(k)与晶体体积V有关。晶体体积的增大使晶体的弹性能增加,同时,会使点阵波频率下降而使点阵振动的自由能减小。两种效果相结合使晶体体积与温度有关。通常引入格临爱森常数来描写
由此式可以导出晶体热膨胀系数的表达式,式中k是点阵波的波矢,j是所属的支的标号。如果近似认为γ与k、j无关,可得到热膨胀系数的近似表达式β=kγс,
k是晶体的压缩系数,с是比热容。这就是格临爱森关系,是E.格临爱森在1908年从实验中总结的经验规律。和热膨胀相似。有关晶体的热力学性质和状态方程的一系列问题,如弹性常数与压力和温度的关系、高温比热容与温度的关系等,都要考虑非谐作用才能得到结果。
非谐作用带来点阵波间的相互作用,或者说声子间的相互作用。比如,考虑三阶非谐作用,就引入点阵波的组合──两个声子组合成一个声子,点阵波的衰变──一个声子变成两个声子等。考虑四阶非谐作用,就有各种四声子相互作用。这些使声子成为有限寿命的准粒子,声子的频率也发生频移;寿命和频移当然都和点阵中声子的分布有关,也就是和温度有关。点阵振动的色散关系的实验数据证实了这些预言。现在也有不少直接观察声子的组合、衰变、散射的实验。
晶体热导(见固体的导热性)的机制是最早考虑点阵波相互作用的问题之一。如不考虑声子与电子或晶体的非完整性之间的散射,在简谐近似下,声子气体是完全理想气体,声子的自由程是无限长的,这时晶体就不会有热阻,不可能建立温度梯度。但考虑了非谐作用引起的声子间相互作用,声子的自由程变成有限的,晶体产生热阻。具体分析声子间散射对热导的贡献,发现倒逆过程(见正规过程和倒逆过程)的贡献是主要的。
非谐作用会产生频率随温度的变化,在结构相变中起重要的作用,至少,它是很多情况下声子软化(在某个温度时某一支声子频率变小趋于零的现象)的起因。虽然一个令人满意的微观理论还有待建立(见软模)。
许多现象在简谐近似下是无法解释的,最熟知的例子是晶体的热膨胀。谐振子的平均位置不因振幅的改变而变化,所以简谐近似下晶体没有热膨胀。而考虑非谐作用,可以解释这现象。这时,非谐作用可归结为点阵波频率ωj(k)与晶体体积V有关。晶体体积的增大使晶体的弹性能增加,同时,会使点阵波频率下降而使点阵振动的自由能减小。两种效果相结合使晶体体积与温度有关。通常引入格临爱森常数来描写
由此式可以导出晶体热膨胀系数的表达式,式中k是点阵波的波矢,j是所属的支的标号。如果近似认为γ与k、j无关,可得到热膨胀系数的近似表达式β=kγс,
k是晶体的压缩系数,с是比热容。这就是格临爱森关系,是E.格临爱森在1908年从实验中总结的经验规律。和热膨胀相似。有关晶体的热力学性质和状态方程的一系列问题,如弹性常数与压力和温度的关系、高温比热容与温度的关系等,都要考虑非谐作用才能得到结果。
非谐作用带来点阵波间的相互作用,或者说声子间的相互作用。比如,考虑三阶非谐作用,就引入点阵波的组合──两个声子组合成一个声子,点阵波的衰变──一个声子变成两个声子等。考虑四阶非谐作用,就有各种四声子相互作用。这些使声子成为有限寿命的准粒子,声子的频率也发生频移;寿命和频移当然都和点阵中声子的分布有关,也就是和温度有关。点阵振动的色散关系的实验数据证实了这些预言。现在也有不少直接观察声子的组合、衰变、散射的实验。
晶体热导(见固体的导热性)的机制是最早考虑点阵波相互作用的问题之一。如不考虑声子与电子或晶体的非完整性之间的散射,在简谐近似下,声子气体是完全理想气体,声子的自由程是无限长的,这时晶体就不会有热阻,不可能建立温度梯度。但考虑了非谐作用引起的声子间相互作用,声子的自由程变成有限的,晶体产生热阻。具体分析声子间散射对热导的贡献,发现倒逆过程(见正规过程和倒逆过程)的贡献是主要的。
非谐作用会产生频率随温度的变化,在结构相变中起重要的作用,至少,它是很多情况下声子软化(在某个温度时某一支声子频率变小趋于零的现象)的起因。虽然一个令人满意的微观理论还有待建立(见软模)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条