1) Chemical deposition-Co-precipitation method
化学沉积-共沉淀法
2) chemical coprecipitation method
化学共沉淀法
1.
Preparation of strontium titanate nanopowder by chemical coprecipitation method with new technique
化学共沉淀法制备钛酸锶纳米粉体新工艺
2.
5CoO3 were prepared by chemical coprecipitation methods .
分别以草酸铵和碳酸氢铵为沉淀剂,用化学共沉淀法制备了La0。
3.
Lead zirconate titanate(PZT)nanopowder with a composition in the vicinty of morphotropic phase boundary (Zr/Ti=52/48) is prepared by optimizing the technology process of chemical coprecipitation method.
分析给出了化学共沉淀法制备纳米粉体的机理 。
3) chemical co-precipitation
化学共沉淀法
1.
Synthesis of ZrW_2O_8/ZrO_2 composites with low thermal expansion using chemical co-precipitation method;
化学共沉淀法合成低热膨胀ZrW_2O_8/ZrO_2复合材料
2.
With the chemical co-precipitation,nanometer magnetite(Fe_3O_4)particles are prepared.
采用化学共沉淀法制备了超细微Fe_3O_4颗粒,选用氨水作为沉淀剂,加入到Fe~(2+)和Fe~(3+)溶液中,制得了Fe_3O_4粒子。
3.
Magnetic SO42-/ZrO2-Al2O3-Fe3O4 solid superacids were prepared by introduction of Al2O3 and magnetic substrates via the chemical co-precipitation method.
利用化学共沉淀法将磁性基质与固体酸组装制备磁性纳米固体超强酸催化剂,利用XRD、Raman、TG-DSC、M)ssbauer、TEM、HRTEM等手段对样品性质进行表征。
4) co-precipitation method
化学共沉淀法
1.
The optimal synthesizing conditions of β-tricalcium phosphate by co-precipitation method were studied.
对化学共沉淀法制备β-磷酸三钙的工艺条件进行了系统研究。
2.
Ca3Co4O9 ceramics were fabricated from powders prepared by the sol-gel and chemical co-precipitation methods.
采用溶胶凝胶法和化学共沉淀法制备了Ca3Co4O9粉体,并烧结为纯相Ca3Co4O9陶瓷。
3.
Emphasizes that rationale of chemical co-precipitation method of nano-crystal material, technology difficulty and resolving schemes for gainning perfect nano-crystal material, reuniting phenomenon in preparation process and how to avoid it.
系统概括了稀土掺杂的纳米晶材料的几种化学制备方法及其特点,并且重点论述了化学共沉淀法制备纳米晶体的基本原理,得到理想的纳米晶材料的技术难点及解决方案,制备过程中的团聚现象以及如何避免团聚现象的发生等。
5) chemical co-precipitation method
化学共沉淀法
1.
Preparation and characterization of nanosized indium tin oxide powders by chemical co-precipitation method;
化学共沉淀法制备纳米ITO粉体及结构表征
2.
Fe_3O_4 nanoparticles prepared by chemical co-precipitation method;
化学共沉淀法制备纳米四氧化三铁粒子
3.
Al-substituted α-Ni(OH)2 by a chemical co-precipitation method were prepared,a group of orthogonal test is arranged and carried out to study the effect of pH value,Al content,aged time,reaction temperature on the specific discharge capacity,and the range analysis is employed to distinguish the influent degree of factors included in this test.
采用化学共沉淀法制备掺杂Al的α-Ni(OH)2,用正交实验研究pH值、掺杂Al的含量、陈化时间、反应温度等制备因素对活性物质放电比容量的影响,并用极差法分析各制备因素影响的显著性。
6) chemical coprecipitation
化学共沉淀法
1.
This paper first reported the preparation of yttrium ferrite ferrofluids using the method of chemical coprecipitation, and obtained the suitable reacting conditions.
该文首次报道用化学共沉淀法制备煤油基钇铁氧体磁流体 ,得到了合适的反应条件 ,运用TEM、IR、XRD、DTA等分析测试手段对磁粒子的形状、大小和结构进行了测定和分析 ,磁粒子的粒径在 15nm左右。
2.
In this paper, strontium lead titanate was prepared from strontium lead titanyl oxalate tetrohydrate by chemical coprecipitation.
采用化学共沉淀法经前驱体草酸氧钛锶铅制得钛酸锶铅粉末。
3.
The preparation of Ba 2Ti 9O 20 ultrafine powder with chemical coprecipitation was studied here.
着重阐述了用化学共沉淀法制备Ba2Ti9O20超微粉的研究,讨论了pH值、分散剂及焙烧温度对粉料性能的影响。
补充资料:化学共沉淀法制粉
化学共沉淀法制粉
preparation of powder by chemical coprecipitation method
化学共沉淀法制粉preparation of powder byehemieal eopreeipitation method用一种或多种金属盐溶液,通过化学反应形成沉淀物,然后经过脱除溶剂和加热分解而制得陶瓷粉体的方法。由这种方法制得的粉体均匀性好,其中所包含的正离子能在原子大小水平上混合在一起,反应性能好,易于烧结。 化学共沉淀制粉的工艺原理是:将沉淀剂加入溶液中,发生下列反应 A++B-一 AB土当溶液中A十与B一离子浓度的乘积〔A十〕·〔B一〕大于其溶度积S协B时,溶液即呈过饱和而AB化合物发生沉淀。在实际反应中,沉淀过程是很复杂的,常常需要调节溶液的酸度、反应温度、沉淀剂的浓度及其加入速度等来扛制沉淀反应速度和沉淀是否完全。当溶液中存在有多种能与沉淀剂发生反应的离子时,生成物中溶度积最小的化合物首先产生沉淀,随着沉淀剂的继续加入和浓度的增加,较大溶度积的化合物会依次被沉淀下来。为使沉淀反应完全,往往使用过量的沉淀剂,以增大离子的浓度乘积。这样在阳离子的种类、大小相似时,就更易于产生共晶物质而共同沉淀出来。这种方法对在某些基体中掺入微量活性离子尤为方便。 化学共沉淀方法可分为:①直接用过量沉淀剂使络液中全部阳离子同时沉淀下来成为混合物;②通过特定沉淀剂,使阳离子形成符合化学计量比要求的前驱体化合物。例如BaTIO(CZO4):·4 HZO(Ba与 Ti比为1:1)沉淀即属此情况;③为避免沉淀剂局部过浓,沉淀剂可通过化学反应在溶液中逐步生成,从而产生均相沉淀。例如把尿素溶解到反应液中,通过加热到70℃以上,使尿素水解产生氨CO(NHZ)2+3 HZO垫2 NH。·HZO+COZ氨在溶液内一旦生成,即与金属离子反应生成沉淀,这样发生的氮浓度低、均匀,获得的粉体纯度高,粒径大小和形状均齐性好。 共沉淀法的适用范围广,除可用于制备各种难溶的金属氢氧化物和氧化物外,还可用于制备碳酸盐、草酸盐、硫酸盐和磷酸盐等。但是如果两种反应物在水中溶解度相差过大,或反应物不是以相同的速度沉淀时,或生成物形成稳定的过饱和溶液时,化学共沉淀法即不宜使用。(袁启华)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条