说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 波士顿矩阵分析
1)  Boston Matrix Analysis
波士顿矩阵分析
2)  Boston matrix
波士顿矩阵
1.
Analysis on Market Competitive State of Sichuan Inbound Tourism Based on Boston Matrix;
基于波士顿矩阵理论模型的四川省入境旅游市场竞争态分析
2.
Analysis on Market Competitive State of Shandong Inbound Tourism Based on Boston Matrix
基于波士顿矩阵理论模型的山东省入境旅游市场分析及策略研究
3.
Analysis on Market of Zhejiang's Inbound Tourism Based on Boston Matrix Model
基于波士顿矩阵模型的浙江省入境旅游市场分析
3)  BCG matrix
波士顿矩阵
1.
BCG Matrix can be used for this analysis.
经过实践,我们发现,借助波士顿矩阵这一战略工具可以满足这个分析意图。
2.
In addition,the BCG matrix analysis is used to divide the 242 disciplines into four different categories,that is,stars,cash cows,question marks,and skinny dogs.
同时,运用波士顿矩阵方法,按照文章数量与发展速度两个维度将中国参与发表Web of Science文章所涉及的242个学科分为四个类别:"明星","奶牛","问号","瘦狗",针对不同的学科类别进行了相应的分析并提出各自的发展战略。
4)  Boston Matrix
波士顿矩阵法
1.
Analyzing the Products Structure and Marketing Stratagem in Guangdong Track Market with Boston Matrix;
试用波士顿矩阵法分析广东货运市场铁路产品的结构与营销策略
2.
This paper discuses some common methods for the information analysis from the angle of competitive intelligence activity,such as SWOT analysis,Delphi method,benchmarking method and Boston matrix.
从竞争情报活动的角度论述了情报分析的一些常用方法,即SWOT分析法、德尔斐法、定标比超分析法、波士顿矩阵法等。
5)  team boston matrix
团队波士顿矩阵
6)  the Boston Consultation Group Matrix (BCG)
波士顿咨询集团矩阵
1.
The Study of the Application of the Boston Consultation Group Matrix (BCG) in Higher Vocational Colleges;
波士顿咨询集团矩阵(BCG)在高职院校专业选择中的应用研究
补充资料:结构分析矩阵法


结构分析矩阵法
matrix method of structural analysis

1 iegou fenxi luzhenfa结构分析矩阵法(matrix method ofstruetural analysi,)把结构分析中的变量和方程用矩阵表示并运算的方法。利用矩阵进行结构分析能使公式简明紧凑,便于编写电子计算机程序。随着计算机的迅速发展,矩阵法在各类工程结构的设计和计算中已得到广泛的应用。尤其是对于大型、复杂的结构分析问题,更显示其优越性。与结构分析中的力法和位移法相对应,矩阵法有矩阵力法和矩阵位移法。两法比较,后者计算简便、定型、规格化,更易于编写程序,因而比前者应用更广。矩阵位移法中的基本未知量是可动结点位移,用矩阵表示为 {占}=「占,灸……品〕了(l)建立基本系是在全部可动结点位移上附加约束,使原结构变为单跨固端梁系或饺结梁系。这些梁也称为单元。根据附加约束处的平衡条件,可建立可动结点平衡方程: 〔K。。〕{占}一{F。}(2)式中(3);护l22凡凡凡…凡 一一 几司|叫刁|列…kl…概klz灿一knzk肠︸瓜reses且1卫weeses.ee‘.L 一一 古 子 尤〔K:。〕称为可动结点劲度矩阵,其中任一元素可由有关单元劲度矩阵中的相应元素叠加得到。{凡}称为可动结点等效荷载列阵,其元素可由结点荷载与杆上荷载通过静力等效原则移置到结点上的荷载叠加求出。形成〔K。,〕、{F;}后,即可由式(2)求解{J}。 单元劲度是指某单元沿某一杆端约束方向发生一单位位移时,在单元各约束方向产生的约束力。由于{占}是按结构整体坐标系求解的,而单元杆端力则按单元局部坐标系计算,所以单元劲度矩阵分为局部坐标系的〔K初、和整体坐标系的〔K,〕‘。对于各种类型单元(如平面和空间的衍杆、梁等)的两种坐标系的劲度矩阵可查阅有关书籍。求出{占}后,即可知单元沿整体坐标系的杆端位移{占}*,再转换成局部坐标系方向的位移{占、},,即可由下式计算杆端力{F,}‘: {F。},=〔K,〕,于占二}、+{Ft}、(4)式中{Fl}‘表示第i单元的固端力列阵。 矩阵力法以多余约束力{X}作为基本未知量,以解除多余约束后的静定结构作为基本系,根据解除约束处的位移条件可建立矩阵力法基本方程: 〔△xx〕{X}二一{△。}(5)式中〔△x妇和{△时分别为柔度矩阵和荷载位移列阵。其中各元素可用虚功法计算。 矩阵法除用于杆系结构(例如水电站、排灌站厂房结构、桥梁和渡槽支架等)外,还可用于板壳、块体及组合结构(例如水工中的拱坝、蜗壳和尾水管等)的近似分析。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条