1) variable structure neural network fuzzy control
变结构神经网络模糊控制
2) variable structure fuzzy neural network
变结构模糊神经网络
1.
The application of variable structure fuzzy neural network in AC decoupling variable system restrains the system quiver as well as enhances the system ability of self learning and self adjusting fuzzy rules.
在感应电动机的控制中采用解耦变结构控制,有效地简化了控制器的设计,并提高了控制器的抗干扰性和鲁棒性,交流解耦变结构系统中应用变结构模糊神经网络,一方面使系统原来存在的抖振得以抑制,另一方面又使系统具有自学习和自调整模糊规则的能力,提高了控制系统的智能,改善了控制系统的性
2.
A model of variable structure fuzzy neural network and its variable structure learning algorithm are proposed in this paper.
提出变结构模糊神经网络控制及其学习算法,并对变结构模糊神经网络学习规律进行研究,变结构模糊神经网络中的模糊化神经网络(FFNN)、模糊推理神经网络(EFNN)和模糊决策神经网络(DFNN)都是结构可变的,可分开进行模糊隶属函数及模糊推理的学习,其学习过程符合人脑由粗到精的认识规律,学习收敛速度比一般模糊神经网络快,具有很好的适应性。
3.
First, variable structure fuzzy neural network control is adopted to design the outside controller of temperature, so it could provide the current instruction signal for the inside controller of three-phase electrode.
首先采用变结构模糊神经网络控制来设计温度外环控制器,给三相电极电流平衡内环提供电流指令信号,然后在内环控制中综合各种优化目标,构造优化目标函数,运用多目标模糊优化决策来实现整个系统的平衡。
3) neuro networks-fuzzy control
神经网络-模糊控制模型
5) fuzzy neural network control
模糊神经网络控制
1.
A fuzzy neural network controller,in which few sensors and no observer were needed,was designed on the basis of the measurement of floor accelerations and control forces.
通过观测部分楼层加速度和控制力输出,建立了模糊神经网络控制器,解决了传统控制中有限的传感器数目对系统振动状态估计的困难;利用模糊神经网络预测结构的控制行为,消除了闭环控制系统中存在的时滞;通过模糊神经网络控制器的学习功能,解决了土木工程复杂结构模糊控制中难以依据专家的主观经验来确定模糊控制规则和语言变量隶属函数等困难。
2.
Based on measurement of floor accelerations and control forces,a fuzzy neural network controller(FNNC) is designed,in which few sensors and no observer are needed.
通过观测部分楼层加速度和控制力输出,建立了模糊神经网络控制器,解决了传统控制中有限的传感器数目对系统振动状态估计的困难。
3.
According to self study ability of neural network, this paper designed a fuzzy neural network controller to apply in one of the post stall maneuvers milestone70 degree angle of attack trimmed flight through train the fuzzy logic rules and membership functions of the traditional fuzzy logic controller, then we got satisfied results.
利用神经网络具有自学习能力的优势 ,采用反向传播学习算法 ,通过对传统模糊逻辑控制器中的模糊逻辑控制规则和隶属函数有关参数进行训练学习 ,设计了模糊神经网络控制器 ,应用于飞机的过失速机动“里程碑”之一—— 70°迎角定常飞行仿真计算 ,获得了令人满意的结果。
6) fuzzy neural network controller
模糊神经网络控制器
1.
New temperature and humidity fuzzy neural network controller based on improved genetic algorithm;
基于改进遗传算法的温湿度模糊神经网络控制器
2.
To satisfy the requirements of higher accuracy and faster response in AC servo system, a system with a fuzzy neural network controller based on immune genetic algorithm (IGA) optimization was designed.
采用免疫遗传算法优化模糊神经网络控制器中隶属函数的平均值、标准偏差以及隶属函数层与规划层的连接权值。
3.
Firstly, the structure of the fuzzy neural network controller (FNNC) is optimized by using a genetic algorithm with a decimal coding scheme.
基于最优控制的思想 ,通过对控制系统的过程模拟 ,提出一种最优模糊神经网络控制器的设计方案。
补充资料:基于模糊神经网络的模具产品报价系统
一、 报价系统概论
产品报价是指被讯价方根据自身所处市场环境、生产、经营、管理现状等因素而针对讯价方所指定的产品及其特殊的功能需求所报出的价格。产品报价是一种复杂而有重要的经济行为。产品报价的高低好坏有利于报价双方能面对面坐下来并经多次商讨而确定产品的成交价格并最终达成协议,签订合同。产品报价[1],特别是比较复杂的产品报价,如模具产品报价,需要许多领域人员的协调工作,如技术、财务、商务等,必须考虑各种结构化和非结构化的因素。其中结构化因素如技术参数、结构参数、工艺参数、制造成本、费用分配比例等比较易于确定的因素。而非结构化因素如最终利润率、赢得订单的几率等,则需要考虑企业内外环境等各种不确定因素。从信息系统角度来考虑,整个报价过程是一个信息流动和信息处理的过程,包括信息的产生、传递、处理、存储;具有很复杂的信息流,涉及到销售、经营、设计、会计、生产计划、采购等等。
[1]目前国内外开发的报价系统依其功能可大致分为五类,即商务型报价系统、生产型报价系统、工程型报价系统、投标型报价系统和集成型报价系统。工程型报价系统实际上是产品选型、初步设计加成本估算,其最终报价的形成有待提高;商务型报价系统,是在技术报价的基础上,对产品价格进行分析、计算、结合价格变化趋势预测的结果,确定合适的产品价格。其全部价值是基于产品成本而做的加价判断或推理。二者各自突现了自己的重点,如前者对报价的结构化问题处理较好,而后者对报价所涉及的非结构化因素研究较为深刻。
二、 模具产品的报价
模具产品的报价是一个非常复杂的过程。但从单纯的仅考虑结构化因素的技术报价来看。
框一、功能分解与评价:
根据客户提供的工件图纸及交货期限、或其他特殊的要求分析工件的结构特征、工艺参数等因素,提取有用信息。
框二、产品方案设计:
根据功能评价所提供的有用信息及交货期限等,考虑自身的生产、经营、管理现状,确定合理的方案。主要有工件排样、模具类型选择、压力机参数估算选型等。
框三、结构设计:
根据设计方案确定模具的合理结构和大致尺寸,同时选定模架形式等。
框四、成本估算:
根据工厂积累的有关经验数据(如外构件的价格、人工费用、材料费用、费用分配比例等)和以往开发同类产品的报价经验,由结构设计和方案设计所得的有关信息,估算产品成本。
框五、历史经验资料、数据:
为方案、结构、成本估算提供各种所需的资料、数据。包括各种工具书、国家标准、材料费用表、人工费用表、费用分配比例、以往开发经验及相关数据等非常有用的各种信息。
产品报价是指被讯价方根据自身所处市场环境、生产、经营、管理现状等因素而针对讯价方所指定的产品及其特殊的功能需求所报出的价格。产品报价是一种复杂而有重要的经济行为。产品报价的高低好坏有利于报价双方能面对面坐下来并经多次商讨而确定产品的成交价格并最终达成协议,签订合同。产品报价[1],特别是比较复杂的产品报价,如模具产品报价,需要许多领域人员的协调工作,如技术、财务、商务等,必须考虑各种结构化和非结构化的因素。其中结构化因素如技术参数、结构参数、工艺参数、制造成本、费用分配比例等比较易于确定的因素。而非结构化因素如最终利润率、赢得订单的几率等,则需要考虑企业内外环境等各种不确定因素。从信息系统角度来考虑,整个报价过程是一个信息流动和信息处理的过程,包括信息的产生、传递、处理、存储;具有很复杂的信息流,涉及到销售、经营、设计、会计、生产计划、采购等等。
[1]目前国内外开发的报价系统依其功能可大致分为五类,即商务型报价系统、生产型报价系统、工程型报价系统、投标型报价系统和集成型报价系统。工程型报价系统实际上是产品选型、初步设计加成本估算,其最终报价的形成有待提高;商务型报价系统,是在技术报价的基础上,对产品价格进行分析、计算、结合价格变化趋势预测的结果,确定合适的产品价格。其全部价值是基于产品成本而做的加价判断或推理。二者各自突现了自己的重点,如前者对报价的结构化问题处理较好,而后者对报价所涉及的非结构化因素研究较为深刻。
二、 模具产品的报价
模具产品的报价是一个非常复杂的过程。但从单纯的仅考虑结构化因素的技术报价来看。
框一、功能分解与评价:
根据客户提供的工件图纸及交货期限、或其他特殊的要求分析工件的结构特征、工艺参数等因素,提取有用信息。
框二、产品方案设计:
根据功能评价所提供的有用信息及交货期限等,考虑自身的生产、经营、管理现状,确定合理的方案。主要有工件排样、模具类型选择、压力机参数估算选型等。
框三、结构设计:
根据设计方案确定模具的合理结构和大致尺寸,同时选定模架形式等。
框四、成本估算:
根据工厂积累的有关经验数据(如外构件的价格、人工费用、材料费用、费用分配比例等)和以往开发同类产品的报价经验,由结构设计和方案设计所得的有关信息,估算产品成本。
框五、历史经验资料、数据:
为方案、结构、成本估算提供各种所需的资料、数据。包括各种工具书、国家标准、材料费用表、人工费用表、费用分配比例、以往开发经验及相关数据等非常有用的各种信息。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条